WiG))

2
?Qmﬂd‘

Wi-Fi Easy Connect™

Specification
Version 3.0

WI-FI ALLIANCE PROPRIETARY — SUBJECT TO CHANGE WITHOUT NOTICE

Use of this document is subject to all of the terms and conditions of the Specification Use Agreement. This
draft specification is based on the non-final version of the specification and is subject to revision and
change. Wi-Fi Alliance provides no assurances of any kind as to whether the information in this document
will represent or not represent the final specification. The information in this document is based upon an
unapproved draft specification and must not be utilized for any conformance or compliance purposes. WiFi
Alliance has not conducted an intellectual property rights ("IPR") review of this document and the
information contained herein, and makes no representations or warranties regarding any IPR, including
without limitation patents, copyrights or trade secret rights. This document may contain inventions for which
you must obtain licenses from third parties before making, using or selling the inventions. All liability and
responsibility for any use of this draft specification rests with the user, and not with any of the parties who
contribute to, or who own or hold any IPR in or underlying, this draft specification.

This document may be used with the permission of Wi-Fi Alliance under the terms set forth herein. By your
use of the document, you are agreeing to these terms. Unless this document is clearly designated as an
approved specification, this document is a work in process and is not an approved Wi-Fi Alliance
specification. This document is subject to revision or removal at any time without notice. Information
contained in this document may be used at your sole risk. Wi-Fi Alliance assumes no responsibility for
errors or omissions in this document. This copyright permission does not constitute an endorsement of the
products or services. Wi-Fi Alliance trademarks and certification marks may not be used unless specifically
allowed by Wi-Fi Alliance.

Wi-Fi Alliance owns the copyright in this document and reserves all rights therein. A user of this document
may duplicate and distribute copies of the document in connection with the authorized uses described
herein, provided any duplication in whole or in part includes the copyright notice and the disclaimer text set
forth herein. Unless prior written permission has been received from Wi-Fi Alliance, any other use of this
document and all other duplication and distribution of this document are prohibited. Unauthorized use,
duplication, or distribution is an infringement of Wi-Fi Alliance’s copyright.

NO REPRESENTATIONS OR WARRANTIES (WHETHER EXPRESS OR IMPLIED) ARE MADE BY WIFI
ALLIANCE AND WI-FI ALLIANCE IS NOT LIABLE FOR AND HEREBY DISCLAIMS ANY DIRECT,
INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES
ARISING OUT OF OR IN CONNECTION WITH THE USE OF THIS DOCUMENT AND ANY
INFORMATION CONTAINED IN THIS DOCUMENT.

©2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Wi-Fi Easy Connect™ Specification v3.0

Telianc”

Document Revision History

Version Date YYYY- Remarks

MM-DD
1.0 2018-04-09 Initial release.
Added R2 features including:

e Improved security, robustness, and troubleshooting capabilities
e Provisioning of a new Configurator
e Presence announcement
e Reconfiguration

2.0 2020-12-14 . —
e Enterprise provisioning
e New bootstrapping mechanisms
e TCP/IP encapsulation of the Device Provisioning Protocol
e Extend the protocol to support Wi-Fi EasyMesh features
e Provisioning non-Wi-Fi information

3.0 2022-11-22 Third release

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 2 of 188

Wi-Fi Easy Connect™ Specification v3.0 wifZ)]

Table of Contents

1 INTRODUGCTION ..oiiiittitteieitte e ettt e e setaee e e s tteeeesteeeeessteeaeaastaeeeeastaeaeeastseeeesstaeeeaasbaeeeeasseeeeassbeeaesasbeeeessbeaeeasseeeesnssneensnes 10
1.1 ST oT0] o1 TP T PP PP TP PPPUPPPRPPPPPPPPIOE 10
1.2 R C (=] (] o[t TP 10
1.3 D= T a1 o] EsTR= U o A3 o] 0170 0 PSS 13

1.3.1 Shall/should/may/might USAQEcccuiiiiieieeiiiiieie e e st e e e s s s e e e e e e s s s e e e e e e e snnnnnrnneeeaees 13
G T 0T 0 1Y/=T o o] PP 13
1.3.3 AbDreviations and ACIONYIMSccceiiiiciieie e e e s e s er e e e e e s s e e e e e s s st ae e e e e e e s s snanteaereeeeesnannnrnnreeaees 13
IR T T 101 1o L TP 15
R 20 T Y/ 1 41 o]SS 17
1.4 EEIM SCOPE .. 17
15 F Y ol o1 (T o (U 2 PP UUOPPUPURPTN 17
1.5.1 DEVICE ROIES ... ettt e e e oottt et e e e oo e s a b et e e e e e e e e e aanbbe e e e e e e e e e nnbaeeeaaaeaan 17
1.5.2 AUhentiCatioN ROIEScooi ittt e et e e e e e e e et e e e e e e e e e s nanbeeeaaaeeas 18
1.5.3 Configurator DEIEGALIONueiiiieii ittt e e et e e e e e e e e sab e e e e e e e e e s e nanaeeeeaaeeas 18
1.6 SECUILY CONSIAEIALIONS ... ettt e oottt e e e e e s e bbb et e e e ae e e s e sbebeeeeaa e e s annbbbeeeaaeeeeannnbeneeas 19
TN R @ 1YL 1= PR PTT 19
1.6.2 THIEAL PrOfilE....cei ittt et e et e e b e nnaee s 19
ST T I 1Y 1Yo To = PP 23

2 DPP PROTOCOL USAGE......cii ittt ittt ettt ettt ettt ettt e sttt sttt et s bttt e e sa bttt e e aabe e e e e eabbe e e e anbeeeeesmbbeeesanbbeeesannaeeens 26
2.1 L@ Y= V= PSPPSR 26
2.2 Infrastructure Set-up and CONNECHIVITY..........uuiiiiieee et e e e e e e e e e e s snbbereeeaeeeeaaanes 26

A Y o OTo 101 [o [N = 11 To] o T PPPTTT TP 26
A S I AN ©o] T [= 1o o PR 26
2.2.3 INfrastructure CONNECHIVILYeiiiiiieiie ittt e e e e e e e e e e s abb e e e e e e e e e annbeeeeas 26
2.2.4 Message Flows for Infrastructure CONNECHIVILYueiiiiiiiiiiiiiiii e 26
2.3 DPP OVEI TCP CONNECLIONS ...ciiiiiiiiiiieiiee e e ettt e e ettt e e e e e s bb et e e e e e e s s anbeeeeeaaeeaaaanbbseeeaaessaasnbanaeaaaeass 31
PG TN R O A= Y1 PSPPI 31
2.3.2 DPP Initiator/Responder Roles and TCP Client/Server ROIESccccvviiiiiiiieiee e 31
2.3.3 Encapsulating DPP in a Streaming ProtoCOIccuuuiiiieeiiiiiiieie e ssieeee e e e e e e e e e 32
A o To= 1o 1S 01 =] o 0 T o I = S 32
2.3.5 TCP/IP =ONIY DPP.....tiiii ittt e e st e e s n bt e s n bt e e s anb e e e s anbbeeeennbbeeeeanbes 35
2.3.6 Bootstrapping With DPP OVEF TCPccii ittt e s e e e e e e s e e e e e s s e e e e e e e e snnrnaeees 35
2.4 DPP SEIVICE DISCOVEIYetiiiiiie e ittt e ettt e e e e e e et ettt et e e e e e s e bete et e e e e e e e abbbeeeeaeeesaaanbbeeeaaaeesaannnnbneeaaaaans 35
P N 0o o1 [(o] | [=T g ST =T Y Tt T S RO PPPTTTTOR 36
2.4.2 REIAY SEIVICES ...ttt ettt e oottt et e e oo e b e b e e et e e e e e e hb e b et e e e e e e e e nbbbe e e e e e e e e annreaeeas 36
A B = oo 1511 =T o] o] o IS =] Vi o] 1S SRR 36
25 SEALUS QU .tttk 5 5555555555555 5555555555555 s s e s e s e e e rennnnnen 38
2.6 Tt] a1 1o 0] =1 do] o [T PR OPTPPPTT 38
P2 TN R O A= T SRS 38
2L TZ2 N 1o [T 6530 (o] gl md=ToTo] 70 11 - i o) o S 39
2.7 (D)o e e o (o Toto] I =T 1T] o PR 40
2 A A S W o] o Lo T 1= To Y =1 7T o SO 41
A N \\[=To 0] 1= (=0 BV =Y 61T} o S 41

3 Y L @1 1 1 I PSPPSR 42
3.1 L 0] o= 1= TP 42
3.2 0 o] [Tl NG VA @2 5/ o (oo =T o] o | TR TOPTPPPRT 42

3.2.1 Supported Public KeyY CryptOSYSIEIMuiiiiiiaeiiiiiiiieeee ettt e e e et e e e e e e s eebb e e e e e e e e e snnreaeeas 42
22 L] -1 1o o TP PPPTT OO 42
3.3 L1 gY o 1o o] r=T o] oIl T (=TT PPPTT OO 43
R 0 A = o 1 o1 =T o] £ TST =T o = LA T o T S 43

4 DATA STRUGCTURES. ...ttt ettt sttt sttt e ottt e e st et e e sabe et e e ea bt e e e e ambe e e e e ambbe e e s anbbeeesanbbeeesnnnneeens 45
4.1 0 o] [To =) PSS 45
4.2 1070] 0] g [=Tox (o] £ PP TR PP PPPPP P PPPPP 45

o N @7 o 1 =1 (o g1 o [11 o SO 46

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 3 of 188

Wi-Fi Easy Connect™ Specification v3.0 wifZ)]
ol
A i o ToteTo [T o PP UUPPUPRRTTN 46
4.3 DPP CoNfIgUIation REQUEST......cii ittt ettt oottt e e e e e e s bbb e e e e e e e e s e saabbeeeeaaeeeaannbbeeeaaaaeas 48
e N R C 1= o 1= - | PP PR 48
T 1V I I =Yoo o] o T Y2 SOOI 48
A.3.3 NEWOIK ROIE ...ttt e e et e e et bt e s st e e e s anbbe e e e snbeeeeeanbes 49
S B 1= = =Yo7 Y SO 49
e ST O {=To (=101 1= | RSP PP 49
4.4 DPP Configuration REQUESE ODJECLuuiiiiiiiiiiiiiiiii et e e s s e e e e e s e st ee e e e e e s snnnnaanneeeaees 52
4.4.1 Optional 3rd party attributes in Configuration Request ObJect ... 53
4.5 D] o] e OfoT o) o [T =11 o] g W @] o] [=Tox ST PR OPTPPPRT 54
T N @ V=T V1= U PP UOPPUPRRTTN 54
4.5.2 Optional 3rd party attributes in Configuration ODJECL............cooiiiiiiiiiiii e 56
R T o ToteTo [T Vo I PP UOPPUPURPTN 56
4.5.4 DPP Reconfig Authentication ODJECESoouuiiiiiiie e 57
5 BOOTSTRAPPING OF TRUSTeiiiiiitiite ittt ettt ettt ettt a e sttt e sttt e e sttt e e e sabee e e e aabe e e e e aabbeeeeambbeeeesnbbeeeeanbbeeessnnneeens 58
5.1 L@ Y= = PO STSTPPP 58
5.2 [2ToTo] 6= ir=1] o1 aTo TN 1) (o] 1 14 T= LA T o ISP 58
5.2.1 Bootstrapping INformation FOIMALc..uuiiiiieiiiiiiiiiece e e s e e e e e e e e e snrnaeees 58
5.3 o= 1g] T 0o Jt= T] 0o [SRS 59
5.4 LN PRSPPI 61
T O N O 1= oY= TP PPPUT ORI 61
5.4.2 NFC CONNECHON HANUOVETuuiiiiiieiiiiiiieiet ettt ettt e e e e et e e e e e e s s nbbbe e e e e e e e s annnreneeas 61
5.4.3 DPP Bootstrapping Via NFC URI RECOIMccccoiiiiiiiiiiiiia et 64
55 11 TET=3 (o] 1 o TR OTPTPPPTT 65
S A O 1= oY= T PPPTT O 65
5.5.2 RESPONAETN PrOCEUUIEScciieiieeieieee e e e ettt e e e e e s e st eee e e e e e s s saa e e e e aeeesannssbaeeeeaeassasserneeeeeeesannnrennees 66
5.5.3 INItIAIOr PrOCEAUIESciiiiiiiie ittt sttt sttt e e sttt e e s ab e e e s anbte e e e nnbbeeeeanbeas 67
5.5.4 BLE GATT Based DPP BOOtSIrapPiNg.......uuueeieeeiiiiiiiiieeeeeeisiiiiieereseessssssreeesssessssnsssnesessessssnnsssseees 68
5.6 PKEX: Proof of Knowledge of a Shared Code, Key, Phrase, or WOrdccccceveeeeiiiciiieneee e 70
5.6.1 PKEX PrelimMinNari©S......ccciiueiiiiiiiiie ittt sttt sttt e sttt e e s amb e e s enbbe e e s anbbe e e s anbeeeeenntbeeesanees 71
5.6.2 PKEX EXChAnQe PRASEccciiiiiiiie ettt sttt e e e e e st e e e e e e s st e e e e e e e e snnrnnees 72
5.6.3 PKEX COMMIt-REVEAI PNASEoiiiiiiiiiiiiiei ettt a e 74
5.7 Bootstrapping Using @ Trusted THird Party............oooi it a e 75
5.8 PUSh BULON PKEX-DASEAcoiiiiiiiiiiiiii ettt ettt e e e e e e e sttt e e e e e e e s nnbaeeeaaaeeas 76
RS A O 1= oY= TP PPPTT OO 76
5.8.2 DISCOVEIY PRASE. ettt ettt ettt e e e e ettt e e e e e s e ab e et e e e e e e s s bbb be e e e e e e e e annbeneeas 77
5.8.3 PKEX push BUttON-DASEA..........oueiiiiiiii e e 80
5.8.4 DPP Authentication and Configuration protoColeeeeiiiiciiiiieeee e 80
5.8.5 Push Button PKEX-based security MitigationsSuevvieeiiiiiiiiieee e cssiieee e e ee e e e 80
6 (B e o o (O @0]I S ORI 82
6.1 L@ Y= = PSSP 82
6.2 DPP PresSence ANNOUNCEIMENTo.uiiiiieiee e ettt e e ettt e e e e e s e e e e e e s s s b b e e e e e e e s e aann b e e e e eeeeesasnnnnneeeaeeas 82
6.2.1 Computing the Hash for Presence ANNOUNCEMENTccooiiiiiiiiiiiiee it 82
6.2.2 Generation of Channel List for Presence ANNOUNCEMENTcoiiiiiiiiiiiiiieieea i 82
6.2.3 Enrollee Presence AnNouncement PrOCEAUIE...........uuuiiii ittt 83
6.2.4 Configurator Procedure and Configurator Connectivity Element............ccccociiiiiiiiiiiiiieiee e 83
6.3 DPP AUtheNtiCAtioN PrOtOCOLci ittt et e e e e s st e e e e e e e e e sanbbe e e e e e e e e aannaneeeaaaeaas 84
LR I A O 1= oY= TP PPPTTT OO 84
6.3.2 DPP AUthentiCation REQUESTuuiiieeiiiiiiiiiiee e s e et e e e e s s s e e e e e e s s e e e e e e s sssna e e e e e eeessnnnrnneees 86
6.3.3 DPP AUthentiCatioN RESPONSE......cuiiieiiiiiiiieei e e e e e eseee e e e e s s s e e e e e e s s s an e e e e aeessassareeeeeeeesannreaeees 87
6.3.4 DPP Authentication CONFIrMiiiiiiiiie et e e b e e e anees 88
6.4 (D] =] = @FoT o) o [] =1 o] = o) (o o o | PSR 90
L R O A= YT PSP 90
6.4.2 DPP Configuration REQUEST.........uuiiieiiiiiiiiiieie e s e s eee e e e e e s s s r e e e e e s st e e e e e e e s snsrarneeaeeessannnreneees 90
6.4.3 DPP CoNnfiguration RESPONSEueiiiiiiiiiiiiiii ittt e e e e e e abe et e e e e e e e s anbb e e e e e e e e e annbeaeeas 90
6.4.4 DPP Configuration RESUIL...........uiiiiiiiiiiii e e e e e e e e e e e e e e nnreae e 93
6.4.5 DPP ConNection StatuUS RESUIL.........cooi i a e 93

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 4 of 188

Wi-Fi Easy Connect™ Specification v3.0 wifZ)]
A
6.5 DPP Reconfiguration Authentication ProtOCOIooiuuiiiiiiiie e 95
LR 00 R O 1V =T V11 PP PPPPPPRS 95
6.5.2 DPP Reconfiguration ANNOUNCEMENTuuiiiieeiiiiiiiiiete e e s esstee e e e e e e s s st e e e e e e e sssntnreeeeeaessannreneees 96
6.5.3 DPP Reconfiguration Authentication REQUESTuuiiiieiiiiiiiiiieee e e e e e 97
6.5.4 DPP Reconfiguration Authentication RESPONSEuuiivieeiiiiiiiiieee e seiere e e e e s re e e e e s nnreaeees 97
6.5.5 DPP Reconfiguration Authentication CONfirMcc.uuiiiiie i 98
6.5.6 Connector Matching for RECONIQUIALIONcccoiiiiiiiiiiie e e e 98
6.6 =204 S L1 oo (1 X 7o o [P STTPRT 99
LS 200 R V1 0T VT3 1T} o PP PPPPPPPRS 99
6.6.2 Network INtroduCtioN PrOtOCOL...........uuuuiiiitiiiiiiiiiieiiiarer e e e re e arersrerersrersrsrsrsrsssrsssrsrsrssnrnnes 99
6.6.3 Private INtrodUCtioN PrOtOCOL..........uuuiiiiiiiiiiiiiiiiiitiiere e erererererarseersrsrsrersrsrsssrsrsssssrsrsrnnns 100
6.6.4 Key Establishment in Network INtrodUCHIONuuuiiiiiiiii e 101
6.6.5 CoNNECLOr GrOUP COMPAIISONuiiiiieiiiittieieee e e ettt ittt e e e e e et be e e e e e e s e aaabeeeeaaeaeaaasbbbeeeaaaeeeaannreeees 101
6.6.6 NEtWOrK ACCESS PrOLOCOISuuuuuuiuiuiiiiiiiiiiiireiaiareteterurererare e ere e rerersrsrsrarsrsrsrsrsrersrsrsssrsssssssssrnrnnns 102
7 STATE MAGCHINES ...ttt ettt e e e st bt e e o st bt e e ek bt e e e ek bt e e e aabbe e e e anbbe e e e anbbeeessnbbeeesanbaeeeenteas 103
7.1 INILIALOr STAE IMACKHINE ..ciiiiii ettt e sttt e e snb et e e st bt e e s snbeeeeennneeee s 103
A T R - 2 PP PP O PP PP PP TPPPP 103
A T Y=Y o (=3 Vg Lo [10 1 01U | SR 103
A S T - 1= o] L= PRSP 103
7.1.4 Parent ProCeSS BENAVIOKccoiuuiiiiiiiiie ettt et 103
7.1.5 State MaChing BERAVIOF...........uuuiiiiiiii bbb e e b e rebebabstsesbsesseesssssssssssssssssrnrnnns 103
7.2 ReSPONAEr StAte MACKIINEooiiiiiii et e e e e ettt e e e e e e s bbb e e e e e e e e e annnbneeaaaeeas 105
0 R - | (=13 PO 105
7.2.2 EVENLS QN OULPUL ...ttt ettt ettt et e e e e ettt e e e e e e e e aabb b e et e e e e e s sanbbbbeeeaaaeesannnbnneeas 105
2 T £ 14 - 1 o] 1= PPRPPPPPPNS 106
7.2.4 State Maching BENAVIOTccoiuuiiiiiiiiee ettt s s b e st e e s enees 106
7.3 (0% a1{To 8T = N (o] g r= L (=N = o] 1 1 SR 108
AR B A - 2T TP P PP URPPPR PP 108
A B Y=Y o1 (=3 Vg Lo [11 1 01U | SR 108
RS S Y £ 1= o] L= SRS 108
7.3.4 Parent ProCeSS BENAVIOKccoiuuiiiiiiiiie ettt ettt s b bbb e e e enens 108
7.3.5 State MaChiNg BERAVIOF..........uuuuiiiiiiiii bbb e e e b e bebsbabsesesbsssressssssssssssssssssrsrnnns 108
7.4 ENrOlEE StAtE MACKINE ... uiiiiiiiiiiiiiiiii ittt ieeeeeeeeeeeaeeereeeeeeeesaeeessesessssesssesssesssssssssssssssssssesssssnsnsssssssnnnssnnsnnns 110
A S R - | (=13 PRSPPI 110
7.4.2 EVENLS QN OULPUL ...ttt et e e e s e bbbt e e e e e e s e aabb b e e e e e e e e s aanbbbbeeeaaaeeeannnbnneeas 110
A T £ 14 - 1 o] 1= PRPPPPPPNS 110
7.4.4 State MaChiNg BERAVIOF..........uuuuiiiiiiiiii e e e e e b s eebstarstststsssssssssssssssssssssssrnrnnns 110
7.5 (D=1 e= 11 [=To I = o) CoTodo] I B 1= o g o] (oo SRR 112
ST R T = = Vo o) 511 = o o1 Vo R SR 112
7.5.2 DPP Authentication EXCRANGEcccciiiiiiiiiiiiee e ceieee et e e e s e s e e e e e s s s ee e e e e e s annrnreees 112
7.5.3 DPP Configuration EXCRANGEcccieiiiiiiiiiiiiee ettt e s s s e e e e s s seae e e e e e s s nnnnneee e e e e e s annnnneees 114
7.5.4 DPP Network Introduction EXChange..........cuuvieiiiiiiiiiiiie e s st e e e seee e e e e 115
7.5.5 INEIWOIK ACCESS ...uuuuuuuiuiuiiiiiititititutatataeata e aeerarere e eeeeeeeeeeeatetatssesesstsssessesssssssssssssssssnsnsssnsnsnnnssnnnnnns 116
8 DPP ATTRIBUTE, FRAME, AND ELEMENT FORMATS .. .otiiiiiiiiie ettt e sttt et n e e sstee e s sstee e s snten e s enreeeeennes 117
8.1 (] AN 1 € o TU (=T PRPPPPPPNS 117
8.1.1 DPP Attribute Body Field DefinitiONScooiiiiiiiiiiiie e 118
8.2 (] 1= T 1 =TS PPPPPPPPNS 121
8.2.1 DPP PUDIIC ACHION frAMESuuiiiiiiiiiiiii bbb e ba e beberseetabatsestsbssssssssssssssnsssssnssrsrnnns 121
8.2.2 Authentication REQUESTE fraMIB.......ciiii i i s e e e e e s e re e e e e e s ennrereees 122
8.2.3 Authentication RESPONSE frAME........cciiiiiiiiiiiee e s e e e e s s e e e e e e s ennrereees 123
8.2.4 Authentication ConfirM frAMEooiiiii i e e 123
8.2.5 Peer DiSCOVErY REQUESE fTaMEiivi e i ettt e s e s e e e e e e s s e e e e e e e ennrnneees 124
8.2.6 Peer DISCOVEry RESPONSE frAMIE ..coviiiiiiiiiiiiiee ettt e st e e e s e s e e e e e e s s ee e e e e e e ennnrnreees 124
8.2.7 PKEX EXChange ReqUESE framMEcciiiiuiiieiiie e ccees ettt s s e e e e e s e e e e e e s ennnnreees 125
8.2.8 PKEX Version 1 Exchange Request frameocuuiiiiiiiiiiiiiice e 125
8.2.9 PKEX EXxchange ReSPONSE framMec.uuiiiiiiiiiiiiiii ettt 125
8.2.10 PKEX Commit-Reveal ReqQUESE framIecooii i 126

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 5 of 188

Wi-Fi Easy Connect™ Specification v3.0 wifZ)]
ol
8.2.11 PKEX Commit-Reveal RESPONSE frAMEccooiiiiiiiiiiiie et 126
8.2.12 Configuration RESUIL fTAIMEeeiiiiiiee e e e 126
8.2.13 Connection Status RESUIL fraMIEoiiiiiiee e et 127
8.2.14 Presence ANNOUNCEMENL IAIMEuiiiiiiiiie it 127
8.2.15 Reconfiguration ANNOUNCEMENT FTAMEuviiiiiii i r e e e e reees 127
8.2.16 Reconfiguration Authentication REqQUESE framecovveiiiiiiiiiiiee e 127
8.2.17 Reconfiguration Authentication RESPONSE fraMEeoceeiiiiiiiiiiiee e 128
8.2.18 Reconfiguration Authentication Confirm frameccceeii i 128
8.2.19 Push Button Presence ANNOUNCEMENTiiiiiiiiiiiiiiiaa ettt e e e e e s e aiabeeeeeae e e s aasbbbeeeaaaeeesannreeees 129
8.2.20 Push button presence anNOUNCEMENT FESPONSEueeiieereiiuriiieeiaaaaaaanteeeeeaaaeaaaenreeeeeaessaanreneees 129
8.2.21 Private Peer INtrodUCLION QUETYcoii ettt ettt e e e e e e e s nbb e e e e e e e e snnreaeeas 129
8.2.22 Private Peer INtroduction NOTITYooiiiiiiiiieii e 130
8.2.23 Private Peer INtroduction UPAate.............uueiiiiiiiiiiiiii et 130
8.3 DPP Generic Advertisement Service (GAS) framMeSuuiiiiiiiiiiiii e 130
S I8 R =T o 1= = T o 0 - L PRSP SP 130
8.3.2 DPP Configuration REQUEST framMe........cc.uuiiiiiie et sree e e e e e ee e e e e e e reees 131
8.3.3 DPP Configuration RESPONSE framME........uuuiiiiieiiiiiiiiie et e e e e re e e e e e e snrereees 132
8.3.4 DPP Status and EITOr COUESccoiiuiiiiiiiiiee ittt ettt et s s b e e e e bbe e e e enees 135
8.4 Network Introduction ProtOCOI EIBMENTS..........iiiiiiiieiiiiie ittt 135
S R O A= oY1 PRSP 135
8.4.2 Network Introduction ProtoCol AKM SUILE........cciiiiiiiiiiiaaie it 135
8.5 (D]] e =T 0 1T o (PSPPI 136
ST A O V= oV =T TP PP PP 136
8.5.2 Configurator Connectivity EIBMENTuuiiiiiiii e 136
9 DPP CONFIGURATION BACKUP AND RESTOREciiiiitiiiiiiiite ettt e sttt e sitee e sbea e s snstae e s snsbeeesssreeesssbeeessnsnes 137
9.1 (@Y= AV = RSP 137
9.2 DPPASYMMELNICKEYPACKAGE ...t e ettt e e e e s e e e e e s s st ae e e e e e e s snnnnrenneeeeeas 137
9.3 (D] o S g1V (o] o= | I = SRR 138
9.4 DPPAsymmetricKeyPackage ENCIYPLON........c..uuiiiiie e e e e e e e s st e e e e e e s e nnnnraneeeeees 140
9.5 (D] =] =4 ST g \VZ= [oT o=To | B = U= W D= ol Y] o) o) o PP 140
9.6 (D] o] e @to o) e [T =V o] T =TTt (U | PP 141
9.7 DPP CoNfIQUIAtiON RESIOIEciii ittt ettt e e e e e st bttt e e e e e s e aanbbeeeeaeeeeaannbbeeeaaaaeas 141
9.8 Enabling Multiple Configurators in DPPuuiiiii ettt e e ee e e e 141
APPENDIX A IMPLEMENTATION GUIDELINESoctiiiiiitiiiiiiie ittt e sttt e ssitee e e s sttae e e sstaeeesstaeeesstaeaesnssaeessnssaeessnneees 142
Al Using DPP to Configure Enterprise CredentialSoocuuiiiiiiiiiiiiiiieiee e 142
APPENDIX B (INFORMATIVE) TEST VECTORSoiiiiitiiie ittt ettt e sttt st e e e s ntaaeaesstaeaesstaeaesstaeeesstseeesnssneesssnaeens 144
B.1 Test Vectors for DPP Authentication Using P-256 for Mutual Authenticationccccccooviiiiiiiiiiiennns 144
B.2 Test Vectors for DPP Authentication Using P-256 for Responder-only Authentication.............c.cccccceen. 147
B.3 Test Vectors for DPP Authentication Using P-384 for Mutual Authenticationcccccceeevvicciieenee e, 150
B.4 Test Vectors for DPP Authentication Using P-521 for Mutual Authenticationcccccceeeviiiciieenee e, 154
B.5 Test Vectors for DPP Authentication Using Brainpool P-256r1 for Mutual Authentication....................... 158
B.6 Test Vectors for DPP Authentication Using Brainpool P-384r1 for Mutual Authentication....................... 162
B.7 Test Vectors for DPP Authentication Using Brainpool P-512r1 for Mutual Authentication....................... 166
B.8 Enterprise ProViSioNiNg TEST VECIOISciii ittt e e e e e et e e e e e e s e snnbbeeeaaaeeas 170
S A O] 01T [0 =1 (o] ST PUTT PP 170
S O A o] (o] (=T PP PUTT PP 171
APPENDIX C ROLE-SPECIFIC ELEMENTS FOR PKEX......iittttttiitttteiitittessieeeessieeeessssseeesnsssseesnsssssssnsssesssnsssssssnsssees 174
Cl1 Role-specific EIemMents fOr NIST P256cooiiiiiiiiiiee ettt e e e e eabbeeeaaaeeas 174
c.2 Role-specific EIements fOr NIST D384cccoi ettt e e e e s e e e e e s s s ae e e e e e e s s nnnnrenneeeeeas 174
C.3 Role-specific EIements fOr NIST P52 ... iiiiieiee et s s r e e e s e e e e e s s s e e e e e e s e nnnnrenneeeeeas 175
(o! Role-specific Elements for Brainpool P256T1.........cceeiiiiiiiiiiiee e iesiiieee e e e e e setee e e e e e e s st e e e e e e s s nnnreneeeeees 176
C5 Role-specific Elements for Brainpool P3BATL........ccceeiiiiiiiiieiieeeiiiiieee e e e e sseee e e e e s s sneae e e e e e e s s nanreeeeeeees 176
C.6 Role-specific Elements for Brainpool P5L2I1.......cciiiiiiiiiiiiieiee e esiiie e e e e e s eeee e e e e s s s e e e e e e s s nnnrenneeeees 177
APPENDIX D PKEX TEST VECTOR FOR NIST P256ceiiiiiiiiieiiiiiie ittt sttt e s e s snnneee s 178
D.1 Initial State of INitiator aNd RESPONUETeeiiiiiii et e e e e 178
D.2 Initiator Generates PKEX Exchange ReqUeSst frameooo it 178

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 6 of 188

Wi-Fi Easy Connect™ Specification v3.0
ol
D.3 Responder Processes PKEX Exchange Request frame ... 179
D.4 Responder Generates PKEX Exchange ReSpoNSe frameoocuviiiiiiiiiiiiiiiiieeee e 179
D.5 Initiator Processess PKEX Exchange ReSPONSE framMecccoviiiiiiiiiie i e e raneene e e 180
D.6 Initiator Generates PKEX Commit/ReVEeal REQUEST...........ouiieiiiiiiiiiiiie e e e s e e e e s nnanreeee e e 180
D.7 Responder Processes PKEX Commit/Reveal ReqUESE frame...........cevvvieiiiiiiiiiiiie e seene e 181
D.8 Responder Generates PKEX Commit/Reveal RESPONSE frame.........covviiiiiiiiiiiiiie e 182
D.9 Initiator Processes PKEX Commit/Reveal RESPONSE framMe..........c.uvuviveeiiiiiiiiiiiiee e e esirene e 183
APPENDIX E DPPENVELOPEDDATA TEST VECTOR FOR NIST P-256cotiiiiiiiiiiiiiie e 184
APPENDIX F CSR ATTRIBUTES REQUEST TEST VECTORcciiiiiiiitiiie ittt e s stieee e sttt e s nitae e e sstae e sssaeeesssneeesnnnnees 188
F.1 Request for CSR with p521, ECDSA With SHA-512uuiiiiiiiiiiiit et 188
F.2 Request for CSR with 3072-bit RSA With SHA-256..........uuiiiiiiiiiiii e 188

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 7 of 188

Wi-Fi Easy Connect™ Specification v3.0 wifZ)]

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.

List of Tables

ADDreVviatioNS AN ACTONYMIS ittt e e e e e s et e et e e ea e e s s abbbeeeeaaeeeaasbbbeeeaaaeaeansbnneeeaeeeaaannes 13
D= 1011 (o] S TR 15
DPP URI Data ODBJECE FOMMAL ...ttt ettt e e e et e e e e e e e e sanbbe e e e e e e e e s nnnbneeeaaaeaas 37
Key and Nonce Length Dependency on Prime Length............coooiiiiiiiie et 43
(D] =] S @foT ol aT=Tod (o Tl 200 |V @] o] [=Tex Bl =lo g o 4 F- | S PP 46
Wi-Fi Technology parameter aSSIGNIMENToiiii it ee e s e e e e s s s e e e e e e sn e e e e e e s e snnnrereeeaeesenannes 48
Certificate Credentials OBJECt FOIMAL........cciiiiiiiiiiiiiii e e e e s e e e e e e s e e e e e e e e snnrereees 51
DPP Configuration REQUESE ODJECLuuiiieiiiiiiiiiiei e e s e e e e e e s s s e e e e e e s s s nnnnanneeeeees 53
DPP Configuration ObJECt PAramMeELEISccoiiieiiiiiiii i et e st e e e e s s e e e e e e s e s e e e e e e s snnnnnneneeeaeeas 54
Encoded Length Of ECC PUDBIIC KEYScoiiiiiiiiiiiiie ettt a et e e e e e e e s nnabeeeaaaeeas 59
NFC Handover REQUEST IMESSAQEuuuiiiieeiiiiitiiite e e ettt e e e e et e et e e e e e s s et e et e e e e e e e e sanbbeeeeaaeeeaannabeeeaaaeaas 62
NFC HandoVer SEIECE MESSAQEuueeiiiiieiiiiiitie it ettt e e ettt e e e e e s s b bt e e e e e e e e e e sanbbeeeeaaeeesasnbbeeeaaaeeas 63
DPP BoOtstrapping URI IMESSAQ0E.......uueiiiieiiiiiiitie et ettt ettt e e e e et e e e e e e e e snbb e e e eaae e e s e nnnabeeeaaaeaas 64
Primary Channel AdVertiSEMENt PAramMeEterS.coui ittt e e e e s s eaabeeeeaae s 67
Secondary Channel AdvertiSemMent ParametersS.ccuu i iiiiiiiiee et a e e e e eeees 67
Advertisement Parameter in ADV_IND Payload.............ueeviiiiiiiiiiiiiiie e iscciiiie e e sseieee s e e e s e snnvnanee e e e e nnnes 70
Example of CharacteriStiCS fOr DPP.......cciicii it ee e s e e e e s st e e e e e e s s san e e e e e e s snnnnnnnneeeaeeas 70
Push Button timers SEttiNgS @nd FOIEScciiiieiiiiieie e e s r e e e e e e e s e e e e e e e s s snnnaeaeeeaeeas 78
Push button PKEX-based UneXpected SCENAIIOSc.cvcuuririreeeeeiiiiiiieieeeesssstaeereee e e s s snnnreeereeeessnsnnsnneeeeees 80
DPP Authentication KEY NOTAIONuiiiieeiiiiiiiiiieeee e iesiiie e e e e e s e e e e e e s s st rae e e e e e e s s sanreeeeeaeessnnnnnnnneeeaeeas 85
DPP Authentication CapabilitiesS ROI& SUMMATYcooiiiiiiiiiiiai it 86
DPP ConNection StatUS ODJECT..........uiiiiiiieiii et e e e e et e e e e e e e s nabaeeeaaaeeas 94
DPP Status Values in a DPP Connection Status ObDJECTcouiiiiiiiiiiiiieeee e 94
netRole Compatibility for RECONFIQUIALION...........ueiiiiiiiie et 98
HPKEE Pal@IMIEBTEIS ... e ettteitiieieittetttt ettt ettt ettt ettt 5555555555555 555555555555 55 555555555555 5555555 e s s s mmnnnmmrnnn 100
netRole Compatibility for Network INtrodUCTION.........cooiiiiiiiiiie et 101
DPP KDE FOIMAL ...cctiiiiiiiitititee ettt e e et ettt e e e 4 e e bbbttt e e e e e s b b e b e et e e e e s e asnb b e e e e e e e e e aannbrneeaeeeeas 102
General Format of DPP AIIDULEoooiiiiie et bbe e s bb e e e 117
ALFDULE 1D ASSIGNMIENTS. .. .eiiiii ittt e e e e e st r e e e e s st e et e e e s s ss st e e eeeessaasteeereaeessaasssteneeeeeesaasnsnenneeennan 117
Enrollee and Configurator Bit SEtHNGSiiic i e e e e e e e e e e s s s e e e e e e s e snrrneeeeeees 119
ProtoCOl VErsion ASSIGNMENTSiiuuiiiiiiee e e i ettt e e e s s ss bt e e e e e e s e st ereaeeesastateeeeeeesssnsteaeeeeeeesannnsrnnneeeens 120
Reconfiguration Flags AttribULe FOrMALcceviiiiiie e e e s e e e e e e s s nanrreeeeeee s 121
(ofo] e =Tod (o] (=) VY £= LU 1= T PRPPPTRPT 121
General Format of DPP Public ACHON frameuiiiiii e 121
DPP PUDIIC ACHION FrAME TYPE ...iiiiiiiiiiee ettt ettt et e e e e e ettt e e e e e st b be e e e e e e e e annsbeaeeeaeaesannbbeeaaaaaess 122
Attributes in the Authentication ReqUEeSt frame ... 122
Attributes in the Authentication ReSPONSE Frameuuiiiiiiiiiiiii e 123
Attributes in the Authentication Confirm framMe ..o e 124
Attributes in the Peer DiSCOVEry REQUESTE framMeoouuiiiiiiii e e e e nneen e e e 124
Attributes in the Peer Discovery RESPONSE framMEuviiiiiiiiii e a e e e senarre e e e 124
Attributes in the PKEX Exchange ReqUEST frame...........uuuiiiiiiiiiiiiieice st e e e anvenne e e 125
Attributes in the PKEX Version 1 Exchange Request frameccveevvieeiiiiiiiieice e 125
Attributes in the PKEX Exchange ReSPONSE framMe..........ueiiiiiiiiiiiiiiiiic et e e eneeee e e 125
Attributes in the PKEX Commit-Reveal ReEqQUESE frameooo i 126
Attributes in the PKEX Commit-Reveal RESPONSE frameoooiiiiiiiiiiiiiee e 126
Attributes in the Configuration ReSUIL framMeoooiiiiiiiii e 126
Attributes in the Connection Status ReSUIt framie ... 127
Attributes in the Presence Announcement Request frameuuviiiiiiiiiiiiiii e 127
Attributes in the Reconfiguration ANNOUNCEMENT frAMEooiiiiiiiiiii e 127
Attributes in the Reconfiguration Authentication Request frameccccccovvciiviieie e 128
Attributes in the Reconfiguration Authentication RESPONSE framecoovvciiiiiiie e, 128
Attributes in the Reconfiguration Authentication Confirm frameccccccovviiiiiie e, 128
Attributes in the Push Button Presence Announcement frame..........cuviiiiiiiiiiiieee e 129
Attributes in the Push Button Presence Announcement Response frameccccccvvvvvvieeeeeciecciineeneenn, 129
Attributes in the Private Peer Introduction QUENY frameccoiiiiiiiiiiie s e e 129
Attributes in the Private Peer Introduction NOtify frame ... 130

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 8 of 188

Wi-Fi Easy Connect™ Specification v3.0 wifZ)]

ol
Table 57. Attributes in the Private Peer Introduction Update frameccuviiiiiiiiiiiiiie e 130
Table 58. General Format of DPP Configuration ReqUESE framecooiiiiiiiiiii e 131
Table 59. Attributes in the DPP Configuration REQUESE framMeceviiiiiiiiiiiiicc e s s e e nrnee e e e 131
Table 60. General Format of DPP Configuration Request frame for FragmentsS.........ccccoccvvveeeeeeeveiciieeeee e 132
Table 61. General Format of DPP Configuration RESPONSE framecovvviiiiiiiiiiiiic e 132
Table 62. Attributes in the DPP Configuration RESPONSE framME.......uceiiiiiiiiiiiiiiiee et e e s sreee e e e nanvneeeeee e 133
Table 63. General Format of DPP Configuration Response frame for FragmentS...........cccovvveveeeiiciieeeee e, 134
Table 64. DPP Status @nd EFTOr COUESouviiiiiiiiiie ittt sttt sttt sttt e e s sttt e e st e e s anbbe e e s anbbeeesanees 135
Table 65. AKM Suite Selector for Network Introduction ProtOCOIcooiiiiiiiiiiiiii e 136

List of Figures

Figure 1. Wi-Fi Device ProviSioNiNg ROIEScoui ettt e e e e e bbb e e e e e e e snnbeaeeaaeeeaannes 18
Figure 2. (7] a1 iTo BT =10l gl DI=1[To =14 o] o U TP 19
Figure 3. DPP Message Flow for DPP Provisioning of a STA ENrollee ... 28
Figure 4. Example Message Flow for Network Access USINg @ CONNECTON.........cciiiiiiiiiiiiiiieeeeiiiiieee e 29
Figure 5. DPP Message Flow for DPP Push Button Provisioning of a STA Enrollee ..o, 30
Figure 6. Network Topology and Components for DPP OVEr TCP.......coiiii et 31
Figure 7. Encapsulation of a DPP Action frame in TCP PACKEL..........cuiiiiiiiiiiiiiiece e e e e e snnaeeee e e 32
Figure 8. Message Flow for DPP Authentication when the Controller is the Responder.........c.occcvvvveveeeviiiciineeeenn, 33
Figure 9. Message Flow for DPP Authentication when the Controller is the Initiator.ccccccovvcciiiieiee e, 34
Figure 10. Message Flow for DPP Authentication over @ TCP/IP CONNECLONcccceiiiiiiiiiiieee e ee e s eieeeeea e 35

Example Message FIOW fOr StatuUS QUETYueeiiieiiiiiiiiiiee e e s e ssteee e e e e e s s sttt e e e e e s s et eeeaeessnnntaaneeeeeeessssnnneeeeeessannnns 38
[T 10 = I PP PPRTT 38
Figure 12. Example Message Flow for DPP ReCONfigUrationeeiiiiiiiiiiiiiiiiec et 40
Figure 13. Example DPP ConNector BOAY ODJECTcooiiiiiiiiiiiee ettt e e e e e e e e e e s naabeeeeaaeeas a7
Figure 14. Example JWS ProteCted HEAETeiiiiiiiieie ettt e et e e e e e e s anabeeeaaa e s 48
Figure 15. Example DPP Connector (with line breaks for display purposes only)..........cccoueeiiiiiiiiiiiiie e, 48
Figure 16. Example DPP Configuration ReqUEST ODJECTooiiiiiiiiee e 53
Figure 17. Example DPP Configuration ODBJECT........ciiiii it ee e e e e e e e e s s e e e e e e s s s e e e e e e s snnnnnnnneeeaees 57
Figure 18. CUIVE SUPPOIT DITMASK ..eeeiiieiiieee e e e e e s e e e e e e s s s nae e e e e e e e s annneeneeeeeeesnnnrnneees 59
Figure 19. Example Bootstrapping QR Code for P-256 Public Key with Operating Channels............ccccccovvivviennnnn. 60
Figure 20. Example Bootstrapping QR Code for P-256 Public Key with MAC Address and Serial Number............... 60
Figure 21. Example Bootstrapping Message Sequence Using BLE PassSive SCaN.........cccccveveeeiiiicviiieeie e csiieee e 66
Figure 22. Example Bootstrapping Message Sequence using BLE ACtIVE SCaNccccvvveeviee i 66
Figure 23. BLE Seeker and BLE Provider Service COMMUNICALIONcoiiiiiiiiiiiiiiaaee it a e eiiieeee e 68
Figure 24. Example of BLE DPP Bootstrapping Message Sequence using TDS and BLE GATTccccceeviviiiieeeenn. 69
Figure 25. Transport Data AD Type Format for DPP AdVErtiSEMENT..........uuiiiiiiiaiiiiiiieie e e e e 69
Figure 26. Example DPP connectionStatus ODJECT.........o.uuiiiiiiieee e 95
Figure 27. INILIALOr SEAtE MACKINE ...ttt et e e e st e e e e e e s e ab b be e e e e e e e e aannabbeeaaaaaeas 104
Figure 28. ReSPONAEr StAte MACKIINEooiiiiiie et e e ettt e e e e e e s bbb e e e e e e e e e annnreeeaaaaeas 106
Figure 29. (0% a1{To 8T = N (o] g r= L (=Y = o] 1 o1 SR 109
Figure 30. ENrollee State MACKINEeuiiiie et s e e e e e e e st e e e e e e s e snnsbeaeeeeeeeannnnrrneneaeenan 111
Figure 31. Initiator Capabilities Attribute and Responder Capabilities Attribute Format.............occcvvvveeeeeeiiiiciveenenenn, 119
Figure 32. (O g F= T 0 1= N 11 010 (= 0 = o RS 120
Figure 33. Configurator CoONNECLIVItY EIEMENTuviiiiii e e e s e e e e s s s e e e e e e e e ennreneees 136
Figure 34. Example Message Flow for Enterprise Credential ProviSioning ... 143

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 9 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

1 Introduction

This document is the specification for Wi-Fi CERTIFIED Easy Connect™, the Wi-Fi Alliance® certification program based
on Wi-Fi Easy Connect™. This specification defines the architecture, protocols, and functionality for interoperability of Wi-
Fi Easy Connect-certified devices. The terms "Device Provisioning Protocol" and "DPP" found throughout this document
are interchangeable with "Wi-Fi Easy Connect".

1.1 Scope

The scope of the feature requirements is limited to that defined in this specification. The content of this specification is
designed to address the solution requirement areas that include:

1. Supporting public key based identities for all devices. This use of public keys does not require a Central Authority
or Public Key Infrastructure (PKI).

2. Enabling the use of mobile devices with a user interface to provide a simple user experience during the set-up
process.

3. Supporting multiple methods for discovery and initiating the secure provisioning of a device with methods that
include: In-band, Quick Response codes (QR codes), Near Field Communication (NFC), Label Strings and
Bluetooth Low Energy (BLE).

4. Supporting of a scalable third-party authorization mechanism to manage devices in groups to enable a newly
configured device to communicate with other members of the group with minimal user interaction.

1.2 References

Knowledge of the documents listed in this section is required for understanding this technical specification. If a reference
includes a date or a version identifier, only that specific version of the document is required. If the listing includes neither a
date nor a version identifier, then the latest version of the document is required. In the event of a conflict between this
specification and the following referenced documents, the contents of this specification take precedence.

[1] IEEE Computer Society, “IEEE Standard for Information Technology— Telecommunications and Information Exchange
Between Systems — Local and Metropolitan Area Networks — Specific requirements Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications,” (IEEE Std. 802.11-2016), March 2016

[2] RFC 5297, Synthetic Initialization Vector (SIV) Authenticated Encryption Using the Advanced Encryption Standard
(AES), October 2008, https://datatracker.ietf.org/doc/rfc5297/

[3] RFC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, May
2008, https://datatracker.ietf.org/doc/rfc5280/

[4] RFC 6090, Fundamental Elliptic Curve Cryptography Algorithms, February 2011,
https://datatracker.ietf.org/doc/rfc6090/

[5] ANSI X9.63, Public Key Cryptography for the Financial Services Industry: Elliptic Curve Key Agreement and Key
Transport Protocols, 2011.

[6] RFC 5869, HMAC-based Extract-and-Expand Key Derivation Function (HKDF), May 2010,
https://datatracker.ietf.org/doc/rfc5869/

[7] Wi-Fi Direct Specification v1.7, https://www.wi-fi.org/discover-wi-fi/specifications

[8] ITU-T X.509 (10/2019) Information Technology — Open Systems Interconnection—The Directory: Public Key and
attribute certificate framework, https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-RECX.509-201210-S!'"PDF-
E&type=items.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 10 of 188

https://datatracker.ietf.org/doc/rfc5297/
https://datatracker.ietf.org/doc/rfc5280/
https://datatracker.ietf.org/doc/rfc6090/
https://datatracker.ietf.org/doc/rfc5869/

Wi-Fi Easy Connect™ Specification v3.0

T-_—
R

[9] Wi-Fi Protected Setup Specification, August 2014, https://www.wi-fi.org/discover-wi-fi/specifications

[10] RFC 3339, Date and time on the Internet: Timestamps, July 2002, https://datatracker.ietf.org/doc/rfc3339/

[11] IEEE Computer Society, “Draft Standard for Information technology — Telecommunications and information exchange
between systems Local and metropolitan area networks— Specific requirements Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications Amendment to IEEE P802.11-REVmcTM/DA4.0: Fast
Initial Link Setup, Draft 7.0, March 2016.

[12] RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, March 2014,
https://datatracker.ietf.org/doc/rfc7159/

[13]RFC 4648, The Basel6, Base32, and Base64 Data Encodings, October 2006, https://datatracker.ietf.org/doc/rfc4648/

[14]RFC 7515, The JSON Web Signature (JWS), May 2015, https://datatracker.ietf.org/doc/rfc7515/

[15]RFC 7517, The JSON Web Key (JWK), May 2015, https://datatracker.ietf.org/doc/rfc7517/

[16] RFC 7518, JSON Web Algorithms (JWA), May 2015, https://datatracker.ietf.org/doc/rfc7518/

[17]FIPS180-4, August 2015."Secure Hash Standard”, United States of America, National Institute of Standards and
Technology, Federal Information Processing Standard (FIPS) 180-4,
https://csrc.nist.gov/publications/detail/fips/180/4/final

[18] RFC 5234, Augmented BNF for Syntax Specifications: ABNF, January 2008, https://datatracker.ietf.org/doc/rfc5234/

[19] U.S. National Institute of Standards and Technology, "DIGITAL SIGNATURE STANDARD", Federal Information
Processing Standard FIPS-186-4, July 2013, https://csrc.nist.gov/publications/detail/fips/186/4/final

[20] RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, January 2005, https://datatracker.ietf.org/doc/rfc3986/

[21]1SO 8601:2004, Data elements and interchange formats -- Information interchange -- Representation of dates and
times, December 2004, http://www.iso.org/iso/catalogue detail?csnumber=40874

[22] draft-harkins-pkex, draft-harkins-pkex05, https://tools.ietf.org/html/draft-harkins-pkex-05

[23]NFC Forum Connection Handover Candidate Technical Specification, December 2015, http://nfc-
forum.org/product/nfc-forum-connection-handover-candidate-technical-specification-version-1-4/

[24] RFC 3211, Cryptographic Message Syntax (CMS) Algorithms, August 2002, https://datatracker.ietf.org/doc/rfc3211/

[25] RFC 3602, The AES-CBC Cipher Algorithm and Its Use with IPsec, September 2003,
https://datatracker.ietf.org/doc/rfc3602/

[26] RFC 5083, Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type, November 2007,
https://datatracker.ietf.org/doc/rfc5083/

[27]RFC 5652, The Cryptographic Message Syntax (CMS), September 2009, https://datatracker.ietf.org/doc/rfc5652/

[28] RFC 5958, Asymmetric Key Packages, August 2010, https://datatracker.ietf.org/doc/rfc5958/

[29] RFC 8018, PKCS #5: Password-Based Cryptography Specification, Version 2.1, January 2017,
https://datatracker.ietf.org/doc/rfc8018/

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 11 of 188

https://www.wi-fi.org/discover-wi-fi/specifications
https://datatracker.ietf.org/doc/rfc3339/
https://datatracker.ietf.org/doc/rfc7159/
https://datatracker.ietf.org/doc/rfc4648/
https://datatracker.ietf.org/doc/rfc7515/
https://datatracker.ietf.org/doc/rfc7517/
https://datatracker.ietf.org/doc/rfc7518/
https://datatracker.ietf.org/doc/rfc5234/
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://datatracker.ietf.org/doc/rfc3986/
http://www.iso.org/iso/catalogue_detail?csnumber=40874
https://tools.ietf.org/html/draft-harkins-pkex-05
http://nfc-forum.org/product/nfc-forum-connection-handover-candidate-technical-specification-version-1-4
http://nfc-forum.org/product/nfc-forum-connection-handover-candidate-technical-specification-version-1-4
https://datatracker.ietf.org/doc/rfc3211/
https://datatracker.ietf.org/doc/rfc3602/
https://datatracker.ietf.org/doc/rfc5083/
https://datatracker.ietf.org/doc/rfc5652/
https://datatracker.ietf.org/doc/rfc5958/
https://datatracker.ietf.org/doc/rfc8018/

Wi-Fi Easy Connect™ Specification v3.0 Wi

@I

[30] RFC 5915, Elliptic Curve Private Key Structure, June 2010, https://datatracker.ietf.org/doc/rfc5915/

[31]RFC 5754, Using SHA2 Algorithms with Cryptographic Message Syntax, August 2010,
https://datatracker.ietf.org/doc/rfc5754/

[32] RFC 7906, NSA's Cryptographic Message Syntax (CMS) Key Management Attributes, June 2016,
https://datatracker.ietf.org/doc/rfc7906/

[33] RFC 3394, Advanced Encryption Standard (AES) Key Wrap Algorithm, October 2002,
https://datatracker.ietf.org/doc/rfc3394/

[34] RFC 2985, PKCS #9: Selected Object Classes and Attribute Types Version 2.0, November 2000,
https://datatracker.ietf.org/doc/rfc2985/

[35] Bluetooth Core Specification, v5.0, December 2016, https://www.bluetooth.com/specifications/bluetooth-core-
specification/bluetooth5

[36] Supplement to the Bluetooth Core Specification, CSS v7, December 2016,
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc _id=421047

[37] The Resurrecting Duckling: Security Issues for Ad-Hoc Wireless Networks, University of Cambridge Computer
Laboratory, https://www.cl.cam.ac.uk/~fms27/papers/1999-StajanoAnd-duckling.pdf

[38] RFC 2409, The Internet Key Exchange, November 1998, https://tools.ietf.org/html/rfc2409

[39] Internet Key Exchange (IKE) Attributes, Group Description (Value 4), https://www.iana.org/assignments/ipsec-
registry/ipsec-registry.xhtml#ipsec-registry-10

[40] Structure of Management Information (SMI) Numbers (MIB Module Registrations), SMI Security for S/IMIME
Algorithms (1.2.840.113549.1.9.16.3), https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#security-
smime-3

[41]RFC 8520, Manufacturer Usage Description Specification, March 2019, https://tools.ietf.org/html/rfc8520

[42]RFC 5911, New ASN.1 Modules for Cryptographic Message Syntax (CMS) and S/MIME, June 2010,
https://tools.ietf.org/html/rfc5911

[43] Transport Discovery Service, v1.0, November 2015,
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc _id=309929

[44] Bluetooth SIG Assigned Numbers,
https://www.bluetooth.com/specifications/assigned-numbers/transport-discovery-service-organization-ids/

[45] RFC 2986, PKCS #10: Certification Request Syntax Specification Version 1.7, https://tools.ietf.org/html/rfc2986

[46] RFC 2315, PKCS #7: Cryptographic Message Syntax Version 1.5, https://tools.ietf.org/html/rfc2315

[47]RFC 7030, Enrollment over Secure Transport, https://tools.ietf.org/html/rfc7030

[48]EAP Method Value types, https://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml

[49] RFC 6762, Multicast DNS, https://tools.ietf.org/html/rfc6762

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 12 of 188

https://datatracker.ietf.org/doc/rfc5915/
https://datatracker.ietf.org/doc/rfc5754/
https://datatracker.ietf.org/doc/rfc7906/
https://datatracker.ietf.org/doc/rfc3394/
https://datatracker.ietf.org/doc/rfc2985/
https://www.bluetooth.com/specifications/bluetooth-core-specification/bluetooth5
https://www.bluetooth.com/specifications/bluetooth-core-specification/bluetooth5
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421047
https://www.cl.cam.ac.uk/%7Efms27/papers/1999-StajanoAnd-duckling.pdf
https://tools.ietf.org/html/rfc2409
https://www.iana.org/assignments/ipsec-registry/ipsec-registry.xhtml#ipsec-registry-10
https://www.iana.org/assignments/ipsec-registry/ipsec-registry.xhtml#ipsec-registry-10
https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#security-smime-3
https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#security-smime-3
https://tools.ietf.org/html/rfc8520
https://tools.ietf.org/html/rfc5911
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=309929
https://www.bluetooth.com/specifications/assigned-numbers/transport-discovery-service-organization-ids/
https://tools.ietf.org/html/rfc2986
https://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc7030
https://www.iana.org/assignments/eap-numbers/eap-numbers.xhtml
https://tools.ietf.org/html/rfc6

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

[50]RFC 6763, DNS-Based Service Discovery, https://tools.ietf.org/html/rfc6763

[51]RFC 8492, Secure Password Ciphersuites for Transport Layer Security (TLS), https://tools.ietf.org/html/rfc8492

[52] RFC 5054, Using the Secure Remote Password Protocol for TLS Authentication, https://tools.ietf.ora/html/rfc5054

[53]RFC 2401, HMAC: Keyed hashing for Message Authentication, https://datatracker.ietf.org/doc/html/rfc2104

[54] RFC 9180, Hybrid Public Key Encryption, https://tools.ietf.org/html/rfc9180

1.3 Definitions and Acronyms

1.3.1 Shall/should/may/might Usage

The words shall, should, and may are used intentionally throughout this document to identify the requirements for DPP.

The word shall indicates a mandatory requirement. All mandatory requirements shall be implemented to assure
interoperability with other DPP capable devices.

The word should denotes a recommended approach or action.
The word may indicates a permitted approach or action with no implied preference.

The words might and can indicate a possibility or suggestion and are used sparingly.

1.3.2 Conventions

The ordering of bits and bytes in the fields within information elements, attributes and action frames shall follow the
conventions in section 9.2.2 of [1] unless otherwise stated.

The word ignored shall be used to describe bits, bytes, fields or parameters whose values are not verified by the recipient.

The word reserved shall be used to describe objects (bits, bytes, or fields or their assigned values) whose usage and
interpretation will be defined in the future by this specification or by other technical specifications/bulletins. A reserved
object shall be set to zero unless otherwise stated. The recipient of a reserved object shall ignore its value unless that
object becomes defined at a later date. The sender of an object defined by this technical specification shall not use a
reserved code value.

1.3.3 Abbreviations and Acronyms

Table 1 defines the abbreviations and acronyms used throughout this document. Some acronyms are commonly used in
publications and standards defining the operation of wireless local area networks, while others have been generated by
Wi-Fi Alliance.

Table 1. Abbreviations and Acronyms

Acronyms Definition

AAD Authenticated Associated Data

AES-SIV Advanced Encryption Standard - Synthetic Initialization Vector
AKM Authentication and Key Management

AP Access Point

ASN.1 Abstract Syntax Notation One

ASP Application Service Platform

BLE Bluetooth Low Energy

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 13 of 188

https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc8492
https://tools.ietf.org/html/rfc5054
https://datatracker.ietf.org/doc/html/rfc2104
https://tools.ietf.org/html/rfc9180

Wi-Fi Easy Connect™ Specification v3.0

Acronyms
BSS
BSSID
CA
CSR
DER
DPP
ECC
ECDH
GATT
GHz
GO
HKDF

JSON
JWS
LSB
MAC
NAK
NDEF
NFC
OID
oul
0O0B
P2P
PB
PBPA
PFS
PKEX
PMF
PMK
PMKID
PMKSA
PKI
PSK

QR

Definition

Basic Service Set

Basic Service Set Identifier
Certification Authority

Certificate Signing Request
Distinguished Encoding Rules
Device Provisioning Protocol
Elliptic Curve Cryptography
Elliptic Curve Diffie-Hellman
Generic Attributes

Gigahertz

P2P Group Owner

HMAC-based Extract-and-Expand Key Derivation Function
Identifier

Information Element

JavaScript Object Notation
JSON Web Signature

Least Significant Bit

Media Access Control

Negative Acknowledgement
NFC Data Exchange Format
Near Field Communication
Object Identifier

Organizationally Unique Identifier
Out-of-band

Peer-to-Peer

Push Button

Push Button Presence Announcement
Perfect Forward Secrecy

Public Key Exchange

Protected Management Frames
Pairwise Master Key

Pairwise Master Key Identifier
Pairwise Master Key Security Association
Public Key Infrastructure
Preshared Key

Quick Response

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 14 of 188

Telianc”

Wi-Fi Easy Connect™ Specification v3.0
ol
Acronyms Definition
RA Receiver Address
RA Registration Authority
RSN Robust Security Network
SA Source Address (IEEE Std 802.11-2007)
SAE Simultaneous Authentication of Equals
SDA Service Descriptor Attribute
SDF Service Discovery frame
SRD Specification Requirements Document
SRF Service Response Filter
SSID Service Set Identifier
STA Station
TA Transmitter Address
TLV Type-Length-Value
UAID Unigue Authenticable Identifier
URI Uniform Resource Identifier
usB Universal Serial Bus
WLAN Wireless Local Area Network
WPA2™ Wi-Fi Protected Access® 2
WPA3™ Wi-Fi Protected Access® 3
WSC Wi-Fi Simple Configuration

1.3.4 Definitions

Table 2 defines the terms that are applicable to this specification.

Term

Alternative Carrier

base64url
Bootstrapping key
Bootstrap Configurator
Client

Configurator

Configurator signing key
Credentials

Connector

Table 2. Definitions
Definition

The Wi-Fi communication technology that is to be used for data transfers between an NFC Handover Requester
and an NFC Handover Selector.

Base 64 Encoding with URL and Filename Safe Alphabet as specified in [13].
A public key that is obtained through a bootstrapping method.

An entity that performs POSTs to the REST API of the Bootstrapping Service.
A P2P Client or a Legacy Client that is connected to a P2P Group Owner.

A logical entity with capabilities to enroll and provision devices for device-to-device communication or Infrastructure
communication

A key pair generated by the Configurator and used to sign Connector credentials.
The information that is required to join a P2P Group as defined in the Wi-Fi Simple Configuration Specification [9].

Credential information that is provisioned on an enrollee device. The Connector is used by a pair of Enrollee
devices to establish a security association using the Network Introduction Protocol.

© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 15 of 188

Wi-Fi Easy Connect™ Specification v3.0 wilDl
=

Term Definition
In-band Data transfer using the WLAN communication channel, including WLAN multiband devices (for example 2.4 GHz, 5

Initiator

JWK
Legacy Client

Listen Channel

Negotiated Version

NFC Device

NFC Handover Requester

NFC Handover Selector

NFC Interface

NFC Tag

Notification

Operating Channel
Out-of-Band
Protocol key

P2P Client

P2P Device

P2P Device Address

P2P Discovery

P2P Interface Address

Network
Persona

Peer

Policy
Provisioning

Responder

Security Domain
Service ID

Service Name

GHz, and 60 GHz).

A device that initiates the DPP Authentication protocol. Either the Configurator or the Enrollee can take the role of
Initiator.

JSON Web Key. JSON encoding of keying material as described in RFC 7517 [14].
A STA that is Wi-Fi CERTIFIED, but not DPP compliant.
The channel chosen from the set of commonly available channels in the 2.4 GHz band 8 (1, 6, and 11).

DPP version used between Peers. This is determined during DPP message exchanges based on each Peer's
Supported Version

NFC Forum compliant contactless device that supports the following: Initiator, Target, and Reader/Writer. It may
also support card emulator.

An NFC Forum Device that begins the Handover Protocol by issuing a Handover Request Message to another
NFC Forum Device.

An NFC Forum Device that constructs and replies to a Handover Select Message as a result of a previously
received Handover Request Message

An NFC Forum Tag that provides a pre-set Handover Select Message for reading.

Contactless interface of an NFC Device.

NFC Forum compliant contactless memory card that can be read or written by an NFC Device and may be
powered by the RF field.

A mechanism for the DPP stack to inform the application on an event matching criteria given either in Publish or
Subscribe.

The channel on which DPP is operating.

Data transfer using a communication channel other than the WLAN

A public key contributed to the DPP Authentication protocol

A P2P Device that is connected to a P2P Group Owner.

Wi-Fi Alliance P2P certified device that is capable of acting as both a P2P Group Owner and a P2P Client.
An identifier used to uniquely reference a P2P Device.

A capability that provides a set of functions to allow a device to easily and quickly identify and connect to a device
and its services in its vicinity.

The MAC address of the P2P interface, an address used to identify a P2P Device within a P2P Group.
A set of interconnection capabilities that share a common access policy.
An abstraction of the subject of Peer authentication and policy enforcement based on the use of a public key.

A Peer is a device provisioned to a network by the Configurator. A Peer is able to connect securely to other
devices previously provisioned by the Configurator to the same network. A Configurator itself can be a Peer.

A list of constraints describing the required attributes of a subject to pass the policy.
Securely enabling a device to establish secure associations with other devices in a network.

A device that responds to the initiation of the DPP Authentication protocol by the Initiator. Either the Configurator or
the Enrollee can take the role of Responder.

An environment comprised of a set of devices that use common security credentials and policies.
Service ID

Service Name

String matching performed on a Service Name should be case insensitive by converting the single byte values [A-
Z] to lower-case before any processing.

© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 16 of 188

- ™ I -
Wi-Fi Easy Connect™ Specification v3.0
Term Definition
Supported Version The highest DPP version supported by a Peer.
Topology The arrangement in which the nodes of a network are connected to each other and (in some cases) to other
networks.
Interactive Bootstrapping A bootstrapping method in which both sides actively participate and can determine when bootstrapping has
terminated.

1.3.5 Symbols

[...] A pair of square brackets around one or more fields in a message specification or around variables in an equation
signifies that those fields or variables are only present or used in the computation under certain conditions or are optional.

{...}x A pair of curly brackets around one or more fields followed by a variable in a message specification signifies that
those fields are encrypted using the value of the variable as the key.

1.4 Item Scope

In general, an item loosely refers to the fields, parameters, or attributes of a DPP data structure. An item's scope defines
its applicability. This document uses the following terms and abbreviations for an item's scope:

Mandatory (M) - indicates the item shall be used or present.
Conditional (C) - specifies that an item's usage depends upon the value of another item.
Optional (O) - establishes an item that may or may not be present or used at an implementor's discretion.

The process involves a device, acting as a Configurator, provisioning another device, acting as an Enrollee. The process
for provisioning consists of four phases:

Bootstrapping - The devices exchange public bootstrapping keys to establish a secure provisioning connection
Authentication - The devices use the bootstrapping keys in the DPP Authentication protocol to establish trust and
to establish a secure channel

e Configuration - The Configurator executes the DPP Configuration protocol to provision the Enrollee over the
secure channel established during DPP Authentication

e Access - The Enrollee uses the newly provisioned credentials to establish network access. For example, the
Network Introduction Protocol may be used to establish keys for this connectivity

1.5 Architecture

In DPP, public keys are used to identify and authenticate all devices. The private key associated with a public key should
be generated within each device and protected from disclosure. Devices use public key cryptographic techniques? to
authenticate Peer devices and establish shared keys for further secure communications. This architecture simplifies the
establishment of secure connectivity between devices and provides a foundation for improved usability in provisioning and
connecting devices.

1.5.1 Device Roles

The DPP architecture defines the device roles during bootstrapping, authentication, provisioning (configuration) and
connectivity (introduction). There are two types of roles, Configurator and Enrollee on the one hand and Initiator and
Responder on the other.

A Configurator supports the set-up of Enrollees, as shown in Figure 1. The Configurator and the Enrollee engage in DPP
bootstrapping, the DPP Authentication protocol and the DPP Configuration protocol. Either Configurator or Enrollee may

1 This use of these public keys does not require a Certificate Authority (CA) nor PKI

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 17 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

perform the role of Initiator in the DPP Bootstrapping protocol (for example in PKEX) and in the DPP Authentication
protocol. However, only Enrollees initiate the DPP Configuration protocol and the DPP Introduction protocol.

It is assumed that both parties possess bootstrapping keys from the same elliptic curve prior to beginning the DPP
Authentication protocol. If necessary (and depending on the bootstrapping method),bootstrapping keys may be generated
on-demand. The DPP Authentication protocol requires the Initiator to obtain the bootstrapping key of the Responder as
part of a prior bootstrapping mechanism. Optionally, both devices in the DPP Authentication protocol may obtain each
other’s bootstrapping keys in order to provide mutual authentication.

After the authentication completes, the Configurator provisions the Enrollee for device-to-device communication or
infrastructure communication. As part of this provisioning, the Configurator enables the Enrollee to establish secure
associations with other peers in the network.

Devices that have been configured by the Configurator are called Peers.

Enrollee l.. I Enrollee

' Configurator

Figure 1. Wi-Fi Device Provisioning Roles

1.5.2 Authentication Roles

Configurators and Enrollees are involved in the DPP Authentication protocol. Depending on the bootstrapping scenario,
either the Configurator or Enrollee may take the role of Initiator or Responder.

The device that starts the DPP Authentication protocol plays the role of Initiator. The device that responds to an Initiator
request plays the role of Responder. The DPP Authentication protocol provides authentication of a Responder to an
Initiator, and optionally authentication of the Initiator to the Responder. This assumes that the Initiator has obtained the
bootstrapping key of the Responder to perform unidirectional authentication, and that both parties have obtained each
other's bootstrapping keys to optionally perform mutual authentication.

For example, a mobile device may act as a Configurator to configure unprovisioned devices acting as Enrollees. An
unprovisioned device could include an Access Point or another mobile device. The Configurator acts as the Initiator when
it initiates the DPP Authentication protocol with the Access Point and the unprovisioned mobile device.

1.5.3 Configurator Delegation

In some cases, it is desirable to make use of multiple Configurators for provisioning. A Configurator may delegate its
management to a new Configurator to share management and provide a backup of the Configurator capabilities, as
shown in Figure 2. The delegation to a new Configurator is done through the Configurator backup and restore process
which is described in Section 9.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 18 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Configurator

Configurator

Figure 2. Configurator Delegation
1.6 Security Considerations

1.6.1 Overview

DPP is designed to provide user friendly Wi-Fi set-up while maintaining or increasing the security level for the growth and
continued penetration of Wi-Fi technology. DPP strives to protect against:

1. Passive adversaries or eavesdroppers that could obtain sensitive information by receiving traffic over the Wi-Fi
radio interface, either during provisioning or after successful provisioning.

2. Active adversaries that could create new networks, add devices to existing networks, or divert devices from the
legitimate network to an illicit network.

3. Active adversaries that could deny provisioning service without alerting the user.

The following sections describe the security considerations that were taken into account in specifying the DPP protocol.

1.6.2 Threat Profile

The DPP protocol has three phases, each of which may be the target of an attack: (1) bootstrapping, (2) authentication
and provisioning, and (3) network access.

1.6.2.1 Threats to Bootstrapping

Bootstrapping is a form of “original entity authentication” (the step from which all subsequent authentication takes place)
and consists of the transfer of a public key credential from a transmitting entity to a relying entity in a manner that allows
for establishment of trust in the public key by the relying entity to trust that the public key belongs to the transmitting entity.
One threat to bootstrapping is subversion in which a public key under control of the attacker will be transferred to the
relying party instead of the actual transmitting entity’s public key being transferred. Another threat to bootstrapping is a
case in which the attacker learns the public key that is transferred to the relying party and the attacker uses that public key
to initiate DPP Authentication to provision the relying entity.

Different types of bootstrapping transfer the credential differently and, therefore, provide different attack vectors.
1.6.2.2 Threats to QR Code Scanning

A QR code that encodes a public key may be affixed to the transmitting entity or accompany the transmitting entity, for
instance as part of a packing list. Subversion of this exchange consists of substituting a QR code that encodes the
attacker's public key for the honest transmitting entity’s public key by affixing a QR encoded public key as a sticker on top
of the transmitting entity’s QR code sticker, or by exchanging a packing list that contains the attacker's QR encoded public
key, or by replacing the scanning application with a malicious version.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 19 of 188

Wi-Fi Easy Connect™ Specification v3.0

A QR encoded public key that is displayed by a transmitting entity with a suitable user interface is much harder to subvert
because it requires physical control of the transmitting entity’s user interface. Displaying a QR code on a screen allows
the transmitting entity to control who is able to scan it and when. Depending on the authentication roles (see section 3.2),
this can enhance trust in the relying party. An attack against this type of temporal access to a QR code may occur if the
transmitting entity leaves the QR code on the screen for an extended period of time, or reuses a QR code for multiple
relying entities, or if the attacker replaces the scanning application with a malicious version.

No proof of possession of the private analog to the QR encoded public key is provided with this bootstrapping method,
which makes subversion impossible to discover.

1.6.2.3 Threats to NFC

NFC bootstrapping may be done through negotiated handover between two NFC devices or through static handover using
an NFC tag.

Negotiated handover allow devices to exchange bootstrapping information including the bootstrapping key from a device
(referred to as “Peer Device A”) to another device (referred to as “Peer Device B”). The bootstrapping information can be
communicated one way or bidirectional. A threat exists to both these modes due to the fact that Peer Device A will send
its bootstrapping key to any device in close proximity. Peer Device B offers the user the opportunity to accept the
connection so Peer Device B has the ability to restrict to whom it sends its bootstrapping key, but Peer Device A has no
ability to control who receives its key. Another threat exists to both these modes through the proximity restriction. Any
device that is also within range of Peer Device A and Peer Device B can obtain copies of both device’s bootstrapping key.
No proof of possession of the private analog to the bootstrapping keys of Peer Device A and Peer Device B is provided
with both modes which makes subversion impossible to discover.

Static handover mechanisms allow an NFC device acting as the Initiator to obtain bootstrapping information including the
Bootstrapping public key from an NFC Device acting as a Responder or an NFC tag associated with the Responder.
Depending on the roles (see section 3.2) this can enhance trust in the relying party. An attack against this type of
temporal access to a static NFC tag can be affected by the transmitting entity leaving the NFC tag available for an
extended period of time or by re-using a static NFC tag for multiple relying parties.

For both negotiated and static handover mechanisms, no proof of possession of the private analog to the public key is
provided which makes subversion impossible to discover.

1.6.2.4 Threats to BLE

Bootstrapping mechanisms that use Bluetooth Low Energy (BLE) technology send bootstrapping information including the
bootstrapping key from a device (referred to as “Peer Device A”) to another device (referred to as “Peer Device B”). The
bootstrapping information can be communicated one way or bidirectional.

A threat exists due to the fact that Peer Device A will send its bootstrapping key to any device in close proximity. Peer
Device B offers the user the control of the connection so Peer Device B has the ability to restrict to whom it sends its
bootstrapping key, but Peer Device A has no ability to control who receives its key. An attack against this type of temporal
access to bootstrapping information available through BLE can be effected by the transmitting entity making the
bootstrapping information available for an extended period of time or by using the same bootstrapping information for
multiple relying parties, in addition to an attack by replacing a scanning application with a malicious version.

Another threat exists to both modes through the proximity restriction. Any device that is also within range of Peer Device A
that Peer Device B can obtain copies of both device's bootstrapping key.

No proof of possession of the private analog to the bootstrapping keys of Peer Device A and Peer Device B is provided
with both modes which makes subversion impossible to discover.

1.6.25 Threats to Proof of Knowledge of a Shared Code (PKEX)

A shared code, key, phrase, or word (hereinafter “code”) may be used to encrypt public keys that are transferred in-band
over Wi-Fi. The ability to decrypt the public key and use it in a Diffie-Hellman exchange proves that the transmitting and
relying entities used the same code. In this bootstrapping technique, each side is both a transmitting entity and a relying
entity and they exchange each other’s public keys. Since the keys are transmitted in an encrypted manner, a passive
adversary cannot observe the public keys being exchanged.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 20 of 188

Wi-Fi Easy Connect™ Specification v3.0

To subvert this bootstrapping method, it is necessary to guess the shared code used to encrypt the public keys. The
difficulty in guessing the code is directly proportional to the size of the pool of possible codes from which the particular
code was drawn. If the size of the pool of possible codes is X, then the probability is 1/X of a successful guess. This
bootstrapping method is resistant to passive attack and off-line dictionary attack. The only information an adversary learns
from an active attack is whether a single guess of the code is correct or not.

In addition, threats against this bootstrapping method are possible if public keys or codes are reused. Using the same
code with multiple public keys will allow an entity that had successfully bootstrapped public keys in the past to subvert a
future bootstrapping by passively observing public keys. Using the same public key with different codes will allow an entity
that had successfully bootstrapped public keys in the past to launch an off-line dictionary attack to determine the code,
although due to the one-time nature of the code used in this bootstrapping technique, an ex post facto attack to determine
the code is of dubious value.

Proof-of-possession of the private analog to the exchanged public keys is provided by this bootstrapping method.
Therefore, an entity will have proof, with probability of 1-(1/X), that the public key it bootstrapped belongs to the Peer
entity with which it shared the code.

1.6.2.6 Threats to Bootstrapping via a Third Party

When obtaining bootstrapping keys using a third-party service, an additional attack surface exists beyond the two devices
performing DPP. Care shall be taken to analyze the relationships between all three actors for potential attack vectors.
See section 5.7 to gain an understanding of the three roles introduced by this method.

Considerations for a Service:

e Service infiltration - exfiltration or replacement of bootstrapping keys: the Service shall ensure the integrity of the
bootstrapping keys in its care. Keys cannot be added or modified except by authorized agents of the Service

e Participant trust: Participants should be authenticated to the fullest extent possible prior to providing access to
bootstrapping keys

¢ Participant control of Entity: the Service shall, to the fullest extent possible, ensure the Participant is the
legitimate owner of the Entity prior to giving the Participant access to the Entity's bootstrapping key

o Denial of Service: the Service shall be available and therefore needs to address any possible denial of service
attacks on it

e Protection of bootstrapping: the channel through which a Service sends an Entity's bootstrapping key to a
Participant shall provide confidentiality and integrity

Considerations for a Participant:

e Service trust: a Participant should authenticate the Service as a legitimate and authorized party to bootstrap keys
for a particular Entity

e Service authenticity: The trust placed in this bootstrapping method by a Participant is tied to the level of
authenticity the Service provides to bootstrapping keys

Considerations for an Entity:

e Proof of Ownership: the trust placed in this bootstrapping method by an Entity is directly tied to the level of control
the Service provides over distribution of its bootstrapping key

1.6.2.7 Threats to Push Button Bootstrapping

e Push Button bootstrapping uses PKEX bootstrapping with a shared code based on a string which is broadcast in
the clear over the wireless medium. This bootstrapping method is completely unauthenticated. During a short
window of opportunity, this method can be subverted by anyone able to receive a wireless frame (without regard
to proximity). It is trivial to subvert this bootstrapping method using an active attack since the code used by PKEX
is not secret. Due to the nature of the PKEX exchange, Push Button bootstrapping remains resistant to passive
attack in the sense that even if a passive attacker knows the code it cannot determine either of the bootstrapping
keys that are exchanged

e Reuse of a bootstrapping key or a shared code with this bootstrapping method by a Configurator does not open
up any additional attacks (as the PKEX bootstrapping method does) because the code used is already public and
subsequent exchanges require possession of private keys as well as knowledge of public keys. Reuse of a

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 21 of 188

Wi-Fi Easy Connect™ Specification v3.0

bootstrapping key with this method by an Enrollee (e.g. in the event that a previous session was interrupted or
aborted) introduces a new attack against it during the DPP Authentication protocol since the Enrollee assumes
that only the legitimate Configurator knows its bootstrapping public key

e This method provides proof-of-possession of the private key corresponding to the bootstrapped public key, but
this benefit is muted due to the unauthenticated nature of the exchange.

e When the user, in contrast to what is specified in section , presses the button on the Enrollee first, a rogue
Configurator can start Push Button bootstrapping immediately by replying with a Push Button Presence
Announcement Response. After the reception of this frame, the Enrollee will one last time send a series of three
Push Button Presence Announcements Requests on all its channels at least once. It will wait for the next Push
Button Presence Announcement Response after which it is ready to start PKEX and get configured. This way, the
Enrollee can be configured by the rogue Configurator in fifteen (T2) plus one or a few seconds at most if the
rogue Configurator adheres to T2 or even less if the rogue Configurator replies immediately to the second Push
Button Presence Announcement frame from the Enrollee. If the user needs more time to go over to the intended
Configurator to push its button, the Enrollee will have been configured by the rogue Configurator without the
Enrollee realizing this

1.6.2.8 Threats to DPP Authentication and Provisioning

The DPP Authentication protocol is exchanged between an Initiator and a Responder. The DPP Provisioning protocol is
used by a Configurator to provision an Enrollee. Different attacks are possible depending on who is the Initiator of the
DPP Authentication protocol, either a Configurator or an Enrollee.

The DPP Authentication protocol provides optional mutual authentication when both parties have bootstrapped each
other’s public keys. Regardless of whether mutual authentication is employed or not, an additional denial of service attack
is possible when the attacker sees the hash of the Responder's public key and constructs bogus DPP Authentication
Request frames to flood the Responder by inducing it to perform Diffie-Hellman exponentiations.

1.6.2.9 Threats when Mutual Authentication is not Supported

When mutual authentication is not provided, the Responder does not have the Initiator’s public key. In this case,
authentication of the Initiator by the Responder is weak and depends on a security model described in [37] that describes
how a device will accept authentication from the first entity that attempts it, analogous to a baby duckling that imprints to
the first moving object that makes a sound. DPP adds slightly to that model by allowing for knowledge of the Responder’s
public key to be controlled and to base weak authentication on the Initiator’'s knowledge of the Responder’s public key. A
device that can control when and how its public key is bootstrapped (see section 3.2.1) can weakly authenticate an entity
that knows its public key.

Additional attacks are possible when mutual authentication is not employed by the Responder.
1.6.2.10 Threats when the Enrollee is the Initiator

The attacker in this scenario is posing as an Enrollee that wants to be provisioned by the Configurator and obtain a
credential for accessing the network or services controlled by the Configurator.

When mutual authentication is not employed, the Configurator does not cryptographically authenticate the Enrollee.
Instead the Configurator relies on the physical security of its bootstrapping information. The Configurator gives a
credential for network or resource access to an entity whose identity has not been strongly determined. The potential for
successful attack depends on the amount of control the Configurator has, and has exerted, over how its public key gets
bootstrapped.

When mutual authentication is employed, the Configurator will have the Enrollee’s public key and will cryptographically
authenticate the Enrollee. Credentials for network access will only be given to entities whose identity can be determined
based on the bootstrapping method used.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 22 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

1.6.2.11 Threats when the Configurator is the Initiator

An attacker in this scenario wants to provision a device and put the device on its network, effectively controlling it. This is
a form of resource hijacking.

When mutual authentication is not employed, the Enrollee does not cryptographically authenticate the Configurator.
Instead the Enrollee relies on the physical security of its bootstrapping information. The Enrollee receives a credential for
network or resource access and a signing key to use for validating other parties’ credentials from an entity whose identity
has not been determined. The Enrollee now obtains network access through the network controlled by the Configurator.
The potential for successful attack depends on the amount of control the Enrollee has, and has exerted, over how its
public key gets bootstrapped.

When mutual authentication is employed, the Enrollee will have the Configurator’s public key and will reject provisioning
by a Configurator that cannot prove possession of its private key. Credentials for network or resource access and a
signing key will only be accepted from an entity whose identity can be determined based on the bootstrapping method
used.

1.6.2.12 Threats to Network Access

An attacker in this scenario wishes to obtain elevated privileges. All provisioned devices will have credentials issued by
the Configurator and have a copy of the Configurator’s signing key to validate each other’s credentials.

If a Configurator is willing to engage in the DPP Authentication protocol as both an Initiator and Responder, an attacker
may take advantage of the authentication asymmetry and interact with other Peers who may have mutually authenticated
the Configurator and assume the attacker did as well.

This threat may be mitigated if the Configurator provides the same level of authentication to all Peers it has provisioned,
always require mutual authentication, and use the same bootstrapping methods for different Enrollees.

1.6.3 Trust Model

Trust is “the belief in the reliability and truth of information or in the ability and disposition of an entity to act appropriately,
within a specified context” according to ITU-T X.509, [8].

All entities in DPP shall use a public/private key pair in the DPP Authentication protocol. Trust needs to be placed in the
public keys used in DPP and in the expected results of running the DPP protocols.

1.6.3.1 Trust in Bootstrapped Public Keys

In DPP, trust in a public key is the assurance that the private key is known only by the entity that is presenting or
responding to the public key. Trust in a public key is obtained through bootstrapping.

The trust placed in a public key obtained through a bootstrapping method depends on the potential for the bootstrapping
method to be subverted or attacked. Because an absolute measure of public key trust is not possible, it is useful to think
of trust relatively and note that some bootstrapping methods provide more trust than others (meaning they have less
probability of being subverted and have different abilities to detect subversion).

Each DPP entity will determine the level of trust it places in each public key it bootstraps and will not use a public key if it
is not able to obtain suitable trust.

1.6.3.2 Trust in the DPP Authentication and Provisioning Protocol

The DPP Authentication protocol has a decentralized architecture with no central authority to coordinate or control
authentication. It therefore relies on a direct trust model. Each entity performs the necessary validation of the other entity
to meet the requirements of the exchange.

When DPP entities employ mutual authentication to communicate between each other, the level of trust that each side is
communicating with the correct entity is inversely proportional to the probability of the employed bootstrapping method
being subverted.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 23 of 188

Wi-Fi Easy Connect™ Specification v3.0

Regardless of which entity initiates the DPP Authentication protocol, the Enrollee trusts that the Configurator only issues
credentials to devices that have been authenticated to the level of security required for reception of credentials for exactly
the same purpose as the credential it issued to the Enrollee, and that the Configurator's private signing key has not been
compromised. The Configurator trusts that the public key inside the credential issued to the Enrollee belongs to the
Enrollee.

When there is no mutual authentication, the Responder weakly authenticates the Initiator and trusts it due to ownership,
proximity, or temporal access. If the Initiator gained knowledge of the Responder’s public key, the Responder can take
into account the susceptibility of the bootstrapping method it supports being subverted. Due to the asymmetric nature of
the Configurator/Enrollee trust relationship, the party that imprints has particular trust considerations depending on
whether the party is the Configurator or Enrollee. These considerations balance the due diligence the imprinting party
needs to perform to ensure its trust is not misplaced against the liability of wrongfully trusting a Peer. This is known as
achieving a trust balance and is highly use-case dependent.

1.6.3.3 Imprinting of Enrollee

When the Enrollee responds in the DPP Authentication protocol without mutual authentication, it is accepting imprinting by
an entity it cannot strongly authenticate. Part of the DPP Provisioning protocol is the assertion by the Configurator of an
Enrollee-specific credential signed by the Configurator and the Configurator’s signing key used to validate the credentials
of other entities provisioned by the Configurator. Depending on the liability in the specific use case, an Enrollee may
refuse to engage in a bootstrapping technique that does not meet the required due diligence necessary to achieve a trust
balance. The Enrollee should achieve trust that the Configurator imprinting the Enrollee is legitimate.

For example, a hot water heater can have wireless capabilities to perform certain “smart grid” applications. This requires
connectivity to a home network and the DPP protocol can be used to provision an AP to create the necessary Basic
Service Set (BSS) and provision stations, such as a “smart grid”-enabled hot water heater, to connect to the AP. The
liability in this case is a hot water heater that can be manipulated by an attacker or used by an attacker to gain access to
other devices on the home network. Given that hot water heaters are not mobile or portable, the due diligence of
bootstrapping via scanning a QR code printed on a label physically affixed to the hot water heater or printed on packing
materials should achieve a trust balance. A hot water heater that has never been provisioned is able to trust the first
Configurator that proves it knows the hot water heater’s public key due to the nature of installation of hot water heaters. It
can, therefore, gain trust that the Configurator is controlled or owned by the water heater's installer and is, therefore,
legitimate.

1.6.3.4 Imprinting of Configurator

When the Configurator responds in the DPP Authentication protocol without mutual authentication, it is accepting
imprinting of a device it cannot authenticate and to which it will therefore provide a credential to access a protected
network or resource during the DPP Provisioning protocol. Depending on the liability of the particular use case, a
Configurator may only engage in bootstrapping techniques that meet the required due diligence, that is it will only accept
authentication and proceed to provisioning of the Enrollee if it is able to achieve a trust balance.

For example, a badge printing device that issues temporary badges to an enterprise's visitors can additionally have
wireless capabilities. This device, acting as a Configurator, can issue a dynamic QR code for visitors as well as a badge.
Visitors can scan their personal QR code and engage in DPP with the device to be provisioned for guest network access.
The liability in this case is an attacker obtaining unauthorized network access. To protect against such attacks, the device
enforces access control for the dynamic QR codes it generates by producing them along with the temporary visitor badge.
Then an Enrollee that proves possession of this dynamic public key can be trusted to have obtained the QR code as part
of the badging process and, therefore, be legitimate. Once the bootstrapped public key has been used by the Enrollee,
the device can destroy it along with the private key. The device can trust the results of the DPP Authentication protocol
because the due diligence, in the form of access control and one-time usage of public keys, for this bootstrapping method
exceeds the liability the device is under; It has achieved a trust balance and can issue the credential necessary to permit
network access.

1.6.35 Trust in the DPP Network Access Protocol

The DPP Network Access protocol relies on a transitive trust model due to the signed nature of Configurator-issued
credentials. A device that has a Configurator-issued credential demonstrates that the Configurator established trust in it.
An Enrollee trusts that the Configurator that issued its credential authenticates all other devices to which it issues

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 24 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

credentials at least as strongly. An Enrollee also trusts that the Configurator does not issue credentials, signed by the
same signing key, for different purposes—an Enrollee assumes that another Peer with a valid Connector got that
Connector for the same purpose as the Enrollee. This allows for transitive trust to be established:

e Alice trusts Configurator Charlie
e Bob proves to Alice that Charlie trusts Bob
e Alice trusts Bob

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 25 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

2 DPP Protocol Usage

2.1 Overview

The DPP protocols are typically exchanged between one pair of devices, where one device takes on the role of
Configurator and the other device takes on the role of Enrollee. Either device may initiate the DPP protocol. Roles are
assumed by the Initiator and Responder based upon the type of network that DPP is being used to set-up.

2.2 Infrastructure Set-up and Connectivity

A Configurator may be used to set-up an infrastructure network consisting of one or more APs. A Configurator may set-
up clients (STA devices) and APs in any order and give each of the devices appropriate configuration information to
support subsequent discovery and connectivity to the infrastructure network.

2.2.1 AP Configuration

The configuration information provided to an AP may include:

The SSID for the BSS

Fields to be carried in Beacon and Probe Response frames to designate the connectivity policy
Operating channel or band information

One or more Connectors generated by the Configurator for the authorized connectivity

An optional WPA2-Personal passphrase(s) or PSK(s) for the BSS to support legacy devices

2.2.2 STA Configuration

The configuration information provided to a STA may include:

The SSID for the BSS

Fields to be used to identify networks with the supported connectivity policy

One or more Connectors generated by the Configurator for the authorized connectivity
An optional WPA2-Personal passphrase or PSK for the BSS to support legacy devices

2.2.3 Infrastructure Connectivity

The Configurator provisions both AP and non-AP STA Enrollees to establish a trusted and secure connection.

To provide a scalable method of enabling new Enrollees to connect to the AP without having to contact the AP each time,
the Configurator provisions Connectors (see section 4.2) on each Enrollee. A Connector is a tuple of a Group Identifier, a
Network Role, and a Network Access Key (netAccessKey), all signed by the Configurator. The Group Identifier may
indicate a specific Peer, a group of Peers, or a wildcard that indicates all Peers.

2.2.4 Message Flows for Infrastructure Connectivity

The message flows for infrastructure connectivity are given in Figure 3 and Figure 4. Figure 3 shows a message flow
where a Configurator provisions a STA Enrollee with a Connector. The DPP Bootstrapping protocols are described in
detail in section 5. The DPP Authentication protocol is described in section 6.3, and the DPP Configuration protocol is
described in section 6.4. The notation for the protocol elements used in Figure 3 is given in section 6.3. The STA Enrollee
then uses the Connector to establish a secure connection to an AP via the Network Introduction protocol as shown in
Figure 4. The Network Introduction Protocol is described in section 6.6.

An unprovisioned Enrollee indicates its presence via periodic DPP presence announcements. These announcements may
be made both prior to and after bootstrapping. They cease once DPP Authentication begins but may start up again if DPP
Authentication or DPP Configuration was unsuccessful.

The DPP Authentication protocol requires either the Enrollee or the Configurator to take on the role of Initiator. In the
example message flow shown in Figure 3, the Configurator takes on the role of Initiator and obtains bootstrapping

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 26 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

information for the Enrollee. The bootstrapping information includes the public bootstrapping key as well as a Global

Operating Class and a Channel Number list [1] that the STA Enrollee listens on to perform the DPP authentication
protocol.

The Initiator issues DPP Authentication Request frames on channels in the channel list and waits for a response from the
Responder. After successfully receiving a response, the Initiator validates the result and transmits a DPP Authentication
Confirm frame to complete DPP Authentication. After successful completion of these frame exchanges, a secure channel
between the Initiator/Configurator and Responder/Enrollee is established.

The STA Enrollee initiates the provisioning phase by transmitting a DPP Configuration Request frame and is provisioned
with configuration information in a DPP Configuration Response frame. After successfully receiving the DPP Configuration
Response frame, the Enrollee is provisioned with the information required to establish secure access to the AP. The
Enrollee ends the configuration session by sending a DPP Configuration Result frame, which confirms receipt of the
provisioning information and a status that indicates if it was able to apply it.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 27 of 188

Wi-Fi Easy Connect™ Specification v3.0

v

DPP Authentication Request (SHA256(BgR),
SHA256(B)), Py, {I-nonce, |-capabilities}i1)

Initiator Responder
(Configurator) (Enrollee)
Bootstrapping
€« — —| DPP Presence Announcement (SHA256(“chirp”|Bg)) |— — —
The Configurator The Configurator obtains bootstrapping information from the The Enrollee
begins operating Enrollee using an OOB mechanism (e.g. scan QR code, NFC tap, BLE Tsicens @n e
onlthelchannel exchange). The bootstrapping information includes the Enrollee’s channel specified
received during bootstrapping public key (Br), a global operating class channel, and during
bootstropping by a channel list for DPP Authentication. During this time, an Enrollee bootstrapping.
broadcasting DPP may optionally announce its presence to help a Configurator
Authentication discover it.
Requests.
€« — —| DPP Presence Announcement (SHA256(“chirp”|Bg)) [—— —
DPP Authentication

timeout

v

DPP Authentication Request (SHA256(BR),
SHA256(B)), P, {I-nonce, I-capabilities}y1)

\ 4

timeout

DPP Authentication Request (SHA256(BgR),
SHA256(B)), P}, {I-nonce, I-capabilities}y1)

\ 4

Enrollee successfully receives the DPP
Authentication Request and matches H(BR)

\ 4

DPP Authentication Response (DPP Status, SHA256(BR),
[SHA256(B)),] PR, {R-nonce, I-nonce, R-capabilities, {R-auth}ke}k2)

DPP Authentication Confirm (DPP Status,
SHA256(Bg), [SHA256(B)),] {l-auth}ye)

DPP Configuration

A

DPP Configuration Request ({E-nonce, configuration

attributes}ye)

\ 4

DPP Configuration Response (DPP Status,
{E-nonce, configuration object}ye)

i
Y

DPP Configuration Result ({DPP Status, E-nonce}ye)

\ 4

Figure 3. DPP Message Flow for DPP Provisioning of a STA Enrollee

If the STA Enrollee is provisioned with a Connector as credentials as shown in Figure 4, it discovers the AP, transmits a
Peer Discovery Request frame and then waits for a Peer Discovery Response frame. Upon successful validation of the
Peer Discovery Request and Response frames, the STA and AP mutually derive a PMK and PMKID, and the STA follows

the standard IEEE 802.11 procedures.

© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 28 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Network Access
AP STA
802.11 Scanning
‘ b Enrollee discovers AP and
sends Peer Discavery frame
_1 Peer Discovery Request (Connector) 0 AP,

Peer Discovery Response (Stafus, Connector)

Y

802.11 Authentication (Open) z::‘;(‘:f:;aﬂiitﬁ using the

B02.11 Association

A A
vy

Figure 4. Example Message Flow for Network Access Using a Connector

Alternatively, if the STA Enrollee is provisioned with an X.509 certificate, PSK, PSK Passphrase, or SAE password
credentials to allow it to connect to a legacy AP, the STA Enrollee will use the configuration to discover and associate to
an AP using IEEE 802.11 and either WPA2-Enterprise, WPA2-Personal, WPA3-Enterprise, or WPA3-Personal network
access procedures.

For the push button onboarding method - that relies on PKEX bootstrapping mechanism - the Enrollee shall discover the
Configurator with which the DPP protocol must be performed as depicted in Figure 5. Once the Configurator is discovered
by the Enrollee, the PKEX bootstrapping is started and the rest of DPP protocol (Authentication & Configuration) can
proceed. The discovery is performed thanks to push button presence announcement exchanges. Once the push button is
pressed on the Responder, this triggers a Push Button Presence Announcement frame, that carries the hash value of the
bootstrapping key of the Enrollee. This Push Button Presence Announcement frame is sent until the Enrollee receives the
Push Button Presence Announcement Response frame. This Push Button Presence Announcement Response frame is
sent only if the push button was pressed on the Configurator and it contains the hash of the bootstrapping key of the
Enrollee, the hash of the bootstrapping key of the Configurator and a Nonce.

The following listening periods are triggered by push button events on both Configurator and Enrollee to prevent
simultaneous connections:

e A maximum scanning period that corresponds to the maximum duration of the Configurator discovery phase by
the Enrollee defined in 5.8.2

e Alistening period that prevents simultaneous Enrollee connection attempts. Enrollee onboarding can only occur
after this period whatever the discovery phase duration

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 29 of 188

Wi-Fi Easy Connect™ Specification v3.0

Push Button
pressed

t

Initiator

(Configurator)

Listening
Period Tlc

Push Button Onboarding

1—‘ Push Button Presence Announcement (SHA256(“chirp”|BR)) 1

I

1—{ Push Button Presence Announcement (SHA256(“chirp”|BR)) }

Listening

Period T2c

Push Button Presence Announcement
Response(SHA256(“chirp”|B,), SHA256(“chirp” | BR), C-Nonce)

L

[IIT 11T

Push Button Presence Announcement (SHA256(“chirp” |BR)) }

A

I

A

i

PKEX Exchange Request (X + H(MAC-Initiator | identifier |

code) * Pi)

PKEX Exchange Response (X + H(MAC-Responder | identifier

| code) * Pr)

\ 4

a—
Ko
Responder
(Enrollee)
Push Button
pressed
i
A" A
\
TA
—
- Q
3 ’ 2r
§----- 53
achannelM 2 o

PKEX Commit-Reveal Request (AES-SIV{B},)

PKEX Commit-Reveal Response (AES-SIV{Bg},)

A 4

© 2022 Wi-Fi Alliance. All Rights Reserved.

Page 30 of 188

Regular DPP
protocol
(authentication &
Configuration)

Figure 5. DPP Message Flow for DPP Push Button Provisioning of a STA Enrollee

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Wi-Fi Easy Connect™ Specification v3.0

T-_—
A

2.3 DPP over TCP Connections

2.3.1 Overview

The DPP protocol can be run over non-802.11 links when at least one peer is not using an 802.11 connection. In this
case, the DPP protocol is encapsulated into TCP packets and sent over a well-known port 8908. Both IPv4 and IPv6 are
supported.

To support this feature, three new virtual roles are defined:

1. Controller: A device that aggregates DPP connections over TCP/IP links. The Controller acts as either a TCP
server or a TCP client for DPP connections. The Controller can be either a Configurator or an Enrollee.

2. Relay: A device that bridges DPP connections over 802.11 to a DPP Peer and TCP to a Controller. The Relay
acts as either a TCP server or TCP client for DPP connections.

3. Client: A DPP device that communicates solely as a TCP client.

The Controller and Client can be either a Configurator or an Enrollee. When acting as a Configurator, a Controller can
support communications with more than one Enrollee simultaneously. For each TCP server (single IP address and TCP
port pair), there can only be a single role, either as a Controller or a Relay. These roles are illustrated in Figure 6.

Each socket connection between a Controller and Relay represents a unique DPP conversation. Once DPP has finished,
the TCP socket between the Controller and Relay used for that DPP conversation shall be closed.

A Controller shall publish its service in the DNS, and optionally advertise a different port on which it can be reached (see
Section 2.4). Using mDNS and DNS Service Discovery, Relays browse for DPP services and connect to Controllers for
which a mutually authenticated connection can be established.

DPP
<€ >

802.11 TCP/IP
<€ >€ >

“client” ===

||

“controller”

Figure 6. Network Topology and Components for DPP over TCP

2.3.2 DPP Initiator/Responder Roles and TCP Client/Server Roles

In DPP over TCP, the Controller can act as either the DPP Initiator or DPP Responder, the Client can only act as the DPP
Initiator, and the Relay is neither as it just bridges a conversation and does not take part in. But DPP roles do not map to
TCP roles.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 31 of 188

Wi-Fi Easy Connect™ Specification v3.0 @

Telianc”

If a Relay receives a gratuitous DPP Presence Announcement frame, , a DPP Reconfiguration Announcement frame or a
PKEX Exchange Request frame, it initiates a TCP connection to the Controller (Relay is TCP client, Controller is TCP
server) and forwards it on. The Relay shall drop any other DPP frame if it does not have an existing-- Controller-initiated--
socket connection to the Controller. If the Controller chooses to Initiate DPP it shall do so over that TCP socket, otherwise
it closes the TCP socket.

A Controller may choose to Initiate DPP anytime after it receives bootstrapping information for a DPP peer. In this case
the Controller initiates a TCP connection to a Relay and the Relay transmits the resulting DPP frame over 802.11. Any
response the Relay gets would be sent back over that socket. The Controller may elect at any time to close such an open
socket to a Relay (resulting in any subsequent, non-Presence Announcement, frame received by the Relay being
dropped) and bring up another in a round-robin fashion while searching for a DPP Responder for whom a bootstrapping
key has been obtained. NOTE: The Relay may relay the frames on just one or a limited number of channels. See also
section 2.4.2.

A Client only acts as a TCP client. When it learns of the location of a Controller in a manner outside the scope of this
specification, it initiates a TCP connection to the Controller (Client is TCP client, Controller is TCP server) and begins
DPP.

2.3.3 Encapsulating DPP in a Streaming Protocol

To support streaming protocols, it is necessary to indicate the size of the body of the DPP Action frame in the body of the
streaming protocol packet. In addition, the field portion of an Action frame is used by a recipient to multiplex DPP Action
frames. To encapsulate an 802.11 DPP Action frame into a protocol, the length of the DPP Action frame from the field
(inclusive) to the end is encoded in network order as a 32-bit integer into the body of the protocol packet. Then, the field
from the Action frame header followed by the entirety of the DPP Action frame (the body of an 802.11 Action frame
following the field) is copied into the protocol packet. If a received packet is to be encapsulated over 802.11, the contents
of the packet following the field is copied into an 802.11 Action frame whose header is set to the indicated field. See
Figure 7 for an example of encapsulation using TCP.

DPP in 802.11 Action Frame DPP in TCP Packet (abbreviated header)
Frame Control (13) Duration Version, TOS Length
Destination Address ID Fragment Info
Source Address <:> TTL ‘ Protocol (6) Checksum
BSSID Source IP Address Tcp
Sequence Category (4) Field Destination IP Address Header
) Source Port (eph/dpp) Destination Port (eph/dpp)
DPP Message Sequence & Acknowledgement
\ Checksum ‘ Urgent Pointer

Length of DPP Message

Field

DPP Message

Figure 7. Encapsulation of a DPP Action frame in TCP Packet

2.3.4 Encapsulating DPPin TCP

When Controllers engage in DPP connections through Relays and Clients over TCP, it is necessary to associate state
with each connection to enable multiplexing of multiple conversations. A TCP connection is created for each DPP
connection and is closed when DPP finishes. TCP connections shall not be reused.

Each connection between Relay and Controller, regardless of which entity is the TCP client and which entity is the TCP
server, is identified by a tuple of source IP address, destination IP address, and source TCP port, and destination TCP
port. This tuple uniquely identifies a DPP connection. In addition, a Relay associates the DPP Peer's MAC address to the
state when it is learned through receipt of a frame from the Peer. In the case of the Controller acting as the Initiator, and

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 32 of 188

Wi-Fi Easy Connect™ Specification v3.0

T
in lieu of the Peer's MAC address, the Relay may bind the SHA-256 hash of Br from the DPP Response packet received
from the Controller to this state in order to identify a response.

If a DPP Configuration Response is to be fragmented between the Relay and the Enrollee, the Relay receives the entire
response from the Controller and uses GAS frame fragmentation procedures to transmit the response over an IEEE
802.11 link to the Enrollee.

2.3.4.1 Controller as the Responder

In order to identify DPP messages intended for a Controller, a Relay needs a SHA-256 digest of the Controller’s
bootstrapping public key. This is obtained through DNS-SD as described in section 2.4. Receipt by a Relay of a
gratuitous DPP message sent over 802.11 to the broadcast MAC address is inspected to see whether the SHA-256 hash
of the responder’s bootstrapping key matches a SHA-256 hash of the Controller’s bootstrapping public key. If so, the
Relay initiates a TCP connection to the Controller on the DPP port, binds the MAC address of the sender of the 802.11
DPP frame to the TCP connection state, encapsulates the DPP message into a TCP packet and sends it over the TCP
socket to the Controller.

When acting as a responder, the Controller receives DPP messages from the Relay, processes them, and replies with a
DPP message encapsulated in a TCP packet. The Relay receives these messages, identifies the DPP Peer's MAC
address associated with this TCP connection state, and reencapsulates the DPP message into an 802.11 Action frame
addressed to the DPP Peer.

The DPP connection continues this way until it succeeds or fails. In either case, when DPP terminates, the TCP socket is
closed and the state associated with it is deleted. An example message flow is shown in Figure 8.

Client AP Controller
- (Responder &
(Initiator & Enrollee) (Relay) Configurator)

I I I
Bootstrapping:
Relay obtains the Controller’s IP (IPcontrotier) and public bootstrapping key (Bcontroler)
Client obtains the Controller’s public bootstrapping key (Bg)

SA = MACcjient DA = ff:ff.ff.ffffff

A\ 4

I DPP Auth Request [SHA256(Bg)] I

SHA256(Bg) = SHA256 (Bontrolier)2

DPP Relay Connection =
IPcontraller, SP = tep/*, MACcjient

I SA = |PReIay DA = IPcontroller I

—I SP = tcp/* DP = tcp/dpp I—b

I DPP Auth Request I

I SA = IPcontralier DA = IPgeiay I

< I SA = MACrelay DA = MACcjent I — | sP=tcp/dpp DP=tcp/* [——
- I DPP Auth Response I I DPP Auth Response I

I SA = MACeient DA = MACreiay I > I SA = IPgetay DA = IPcontraler I

I DPP Auth Confirm I _I SP = tcp/* DP = tcp/dpp I_>
I DPP Auth Confirm I

If successful, DPP continues on to configuration stage using similar encapsulation.
Each DPP Relay Connection must be deleted upon DPP termination regardless of the result.

Figure 8. Message Flow for DPP Authentication when the Controller is the Responder

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 33 of 188

Wi-Fi Easy Connect™ Specification v3.0

e

2.3.4.2 Controller as Initiator

If the Controller possesses bootstrapping information for an Enrollee, it may initiate a DPP connection with that Peer
through the Relay. If the Enrollee has been identified through receipt of a DPP Presence announcement, the
announcement directs the Controller to a particular Relay to initiate the DPP Authentication protocol and the existing
connection to the Relay shall be used. In lieu of any such location information of the Enrollee, the Controller may round-
robin requests through Relays until the Enrollee is discovered.

If the Controller is initiating without already receiving a DPP Presence announcement, the Controller initiates a DPP
connection by first initiating a TCP connection to the Relay on the DPP port. The Relay creates a new connection based
upon the TCP connection state. The Controller then generates a DPP packet and sends it, as a DPP TCP data packet,
over the TCP connection to the Relay. The Relay encapsulates the data as an 802.11 Action frame and sends it to the
broadcast MAC address.

If the Relay sent the DPP message to the broadcast MAC address, it is able to match up a response by checking the
SHA-256 hash of Br. The Relay identifies the state associated with this connection and reencapsulates the contents of
the 802.11 Action frame in a TCP packet and sends it to the Controller.

The DPP connection continues this way until it succeeds or fails. In either case, when DPP terminates the TCP socket is
closed and the state associated with it is deleted. An example message flow is shown in Figure 9.

Client AP Controller
(Responder & Enrollee) (Relay) (Initiator & Configurator)
T T T
Bootstrapping:

Relay obtains the Controller’s IP (IPcontroner) and public bootstrapping key (Bcontroier)
Client obtains the Controller’s public bootstrapping key (Bg)

I SA = IPcontroller DA = IPgeiay I

4—' SP = tcp/* DP = tcp/dpp I—
DPP Auth Request [SHA256(Bg)]

DPP Relay Connection =
IPcontrollers SP = tep/*, <empty>

SA = MACgelay DA = ff:ff ff.ff.ff.ff

I DPP Auth Request I

I SA = MACjient DA = MACgelay I
I DPP Auth Response I

SHA256(Bg) = SHA256 (Bcjient)?

DPP Relay Connection =
IPcontrolier, SP = tep/*, MACcient

SA = IPgelay DA = IPcontroller
—I SP = tcp/dpp DP = tcp/* I—>

I DPP Auth Response I

SA = IPcontroller DA = |Pgeiay
P I SA = MACrelay DA = MACient I «— | sP=tcp/* DP =tcp/dpp ||——
B I DPP Auth Confirm I I DPP Auth Confirm I

If successful, DPP continues on to configuration stage using similar encapsulation.
Each DPP Relay Connection must be deleted upon DPP termination regardless of the result.

Figure 9. Message Flow for DPP Authentication when the Controller is the Initiator.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 34 of 188

Wi-Fi Easy Connect™ Specification v3.0

T-_—
e

23,5 TCP/IP -Only DPP

When the DPP initiator is able to set up a TCP/IP connection with the DPP responder, DPP can be run entirely over that
connection without the use of Relays. In this case DPP 802.11 Public Action and GAS frames are not used at all and the
entire DPP protocol is run over TCP between a DPP Client and a DPP Controller. This requires the DPP initiator to have a
priori knowledge of the DPP responder’s IP address. An example message flow for DPP authentication over a TCP link is
shown in Figure 10.

In case the DPP Client needs to discover the IP address of the DPP Controller, the DPP Client can obtain the DPP
Controller name via DPP Service discovery (section 2.4), or as a DNS-resolvable host name or it can obtain it in a manner
outside the scope of this specification.

In case the DPP Controller needs to discover the IP address of an Enrollee, it can obtain it from the host ABNF rule of the
bootstrapping information of the Enrollee or it can obtain it in a manner outside the scope of this specification.

Client Controller
- (Responder &
(Initiator & Enrollee) Configurator)

I I
Bootstrapping:
Client obtains the Controller’s public bootstrapping key (Bg) and IP address
(IP Control/er)

SA = IPcjient

DA = IPcontrolier

SP = tcp/*

DP = tcp/dpp

DPP Auth Request

SA = IPcontroller

DA = IPcjient

SP = tcp/dpp

DP = tcp/*

DPP Auth

SA = IPcjient

Response

DA = IPcontroller

SP = tcp/*

DP = tcp/dpp

DPP Auth Confirm

If successful, DPP continues on to configuration stage using similar
encapsulation. Each DPP Relay Connection must be deleted upon DPP
termination regardless of the result.

Figure 10. Message Flow for DPP Authentication over a TCP/IP Connection

2.3.6 Bootstrapping with DPP over TCP

Any bootstrapping method can be used with DPP over TCP provided that the bootstrapping method is not bound to any
specific 802.11 MAC addresses.

2.4 DPP Service Discovery

Services to facilitate the use of DPP can be published and discovered in the DNS using mDNS (RFC 6762)[49] and DNS
Service Discovery (RFC 6763)[50]. These services consist of:

e Controller services: A networking entity which implements Controller capabilities with DPP over TCP/IP
connections can publish its existence and information about it can be resolved by a Relay

e Relay services: A networking entity which implements Relay capabilities with DPP over TCP/IP connections can
publish its existence and information about it that can be resolved by a Controller

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 35 of 188

Wi-Fi Easy Connect™ Specification v3.0

e Bootstrapping services: A networking entity which implements Configurator capabilities but lacks a camera, or
other means to gather DPP URIs, can publish its existance and information on how an application which has the
abillity obtain DPP URIs can deliver them to the Configurator

All DPP services advertised in the DNS shall use a service name of "_dpp._tcp". Discrimination of the particular service is
done with subtypes.

The TXT record for DPP DNS-SD services should include information regarding the organization-- e.g. a service provider
or an identifying name-- and location of the entity offering the service using the following key/value attribute:

e organization=name
e location=somewhere

where "name" is the name of the organization, or individual, providing the DPP service and "somewhere" provides sufficient
detail to identify a preferred responder in the event that browsing for a service returns multiple responses. Proprietary or
optional key/value attributes MAY be included. Per RFC 6763, unknown keys SHALL be silently ignored.

In addition, TXT records for this version of DPP DNS-SD services SHOULD include a versioning text record of the form:

e txtversion=1
2.4.1 Controller Services

The subtype for Controller Services shall be "_controller”-- i.e. the service will be published as
" _controller._sub._dpp._tcp". If a Controller uses a non-standard port number, it shall advertise the port on which it can be
found in its SRV record with its advertised Service Instance.

In addition to the TXT records described above, Controller services shall also publish a hash of their bootstrapping key
(which is used by Relays to identify messages for the Controller) using the following TXT record:

e bskeyhash=<string>

where <string> is a base64-encoding of the SHA-256 digest of the ASN.1 representation of the Controller's bootstrap
public key . The public key is put in the SubjectPublicKeylnfo structure (as shown in Section 4.1) and encoded with the
ASN.1 Distinguished Encoding Rules (DER). Upon successful connection to a Controller, a Relay shall assign the
decoded SHA-256 digest to the TCP state it maintains for the connection (see section 2.3.2).

2.4.2 Relay Services

The subtype for Relay Services shall be "_relay"-- i.e. the service will be published as " _relay._sub._dpp._tcp". If a Relay
uses a non-standard port number, it shall advertise the port on which it can be found in its SRV record with its advertised
Service Instance. In addition, it shall indicate the list of channels it is operating on using the following TXT record:

e channellist=<string>

where string is a list of channels using the syntax of the class-and-channels ABNF rule of the DPP URI, see section 5.2.1.

2.4.3 Bootstrapping Services

The subtype for Bootstrapping Services shall be "_bootstrapping"-- i.e. the service will be published as

" bootstrapping._sub._dpp._tcp". An entity advertising bootstrapping services shall include a port number in the SRV
record on which a REST API is supported where fully formed DPP URIs of Enrollees can be submitted. The DPP URIs
obtained through this REST API are stored in a Configurator's key database.

The REST API shall support an HTTP POST method to the resource path "/dpp/bskey” containing a single fully formed
DPP URI (the representation of the resource) as data. The Content-Type of the HTTP POST request shall be
"application/json". The body of the HTTP POST shall be a DPP URI data object. The JSON encoding for the DPP URI
data object is given in Table 3.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 36 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

Table 3. DPP URI Data Object Format

Parameter Name Type Value Scope Description
(see Section 1.4)

DPP URI Data dppUriData OBJECT M This represents the JSON Payload of
object the POST method for the
bootstrapping service.
dppUri STRING = DPP URI M The DPP URI as specified by the dpp-

gr ABNF rules in Section 5.2.1

dppRole STRING sta, ap, configurator (0] Indicates the type of the Enrollee
device associated with the DPP URI

The HTTP response for a successful POST SHALL have a status of 200 and no body. Unsuccessful POSTs SHALL have
an error status that is as descriptive of the error as possible. No other APIs are defined.

Note: The database of bootstrapping keys is sensitive due to the assumption that only valid Configurators know an
Enrollee’s bootstrapping key. Therefore care must be taken when adding additional APIs—e.g. GET operations to retrieve
the contents of the database—to prevent unauthorized access.

The entity that performs POSTs to the REST API of the Bootstrapping Service is a Bootstrap Configurator. An example of
a Bootstrap Configurator is an APP on a cell phone that is capable of the following:

e Scans a QR code to obtain the fully formed DPP URI
e Finds the Bootstrapping Service
e Performs a POST of the fully formed DPP URI to the Bootstrapping Service

Note: The entity capturing the DPP URI can inform the Configurator of the dppRole of the Enrollee . This information can
be determined by presenting a Ul to the user to select the dppRole of the device whose DPP URI is being scanned. In case
a value of dppRole is not provided explicitly, the Configurator can assume a default role for the Enrollee (e.g Enrollee as a
STA).

Note: If the received DPP URI does not indicate version 2 or higher, the Configurator upon receipt of the DPP URI through
the HTTP POST, will attempt to initiate DPP Authentication as soon as the DPP URI is received.

An example of a HTTP Post to the bootstrapping service is shown below:
POST /dpp/bskey HTTP/1.1
Host: 192.168.20.1:8080
Content-Type: application/json
Content-Length: 169

Cache-Control: no-cache

{

"dppUri": "DPP:1:SN=4774LH2b4044;M:010203040506;
V:2;K:MDkwEwWYHK0Z1zj0CAQYIK0ZIzj0DAQcDIgADURzxmttZolIRIPWG0oQMVOOXHWCAQIhXruVWOzON;jIKIA=;

"dppRole": "sta"

}

The HTTP traffic for this APl SHALL be protected with a mutually-authenticated TLS connection. TLS 1.3 SHOULD be
used. TLS 1.2 MAY be used, for example to support non-certificate authentication using RFC 8492[51] (TLS-pwd) or RFC
5054[52] (TLS-SRP). If basic authentication or OAuth is used, e.g. when a PAKE is not possible, the server's certificate
MUST be validated using the process defined in RFC 5280([3] (see section 6.1) initiated with trust anchor information

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 37 of 188

Wi-Fi Easy Connect™ Specification v3.0

which may be obtained from an external source—e.g. a manufacturer-provided trusted root store—or may be installed by
local policy in a manner outside the scope of this specification.

It is assumed that the client and server offering the bootstrapping service have engaged in an out-of-band protocol to
establish credentials that can be used to effect the mutually authenticated TLS connection-- for example, a
username/password has been pre-configured or the client and server have enrolled with a Certification Authority. This out-
of-band protocol is out-of-scope of this specification.

The integrity of a Configurator's bootstrapping key database which chooses to advertise this service will be determined by
the applications which use the service and transfer DPP URIs. Applications can insert bogus URIs or substitute public
keys in URIs and corrupt the integrity of the database. It is critical to the security of DPP that the Configurator only grant
access to entities it has authenticated and who have specific authorization to populate the key database.

2.5 Status Query

Status Query is a diagnostic feature that allows a Configurator to request an Enrollee to report connection status after
configuration has completed. A message flow is given in Figure 11. During the DPP configuration procedure, the
Configurator includes a sendConnStatus attribute in the DPP Configuration Response frame. After successfully receiving
the DPP Configuration Result frame, the Configurator remains on the channel used for Configuration, listening for a fixed
amount of time to receive a DPP Connection Status Result frame from the Enrollee. After configuration completes, the
Enrollee applies the received configuration and attempts to connect to an access point. After the connection is attempted,
the Enrollee then returns to the channel used for configuration, and reports the result of the connection attempt.

3 K=

et Errollas in Inileata
Bootsirap key Boolsirapping
Acquining shabs —
T _.-'"#.
T o
DFF Bootstrapping and Authefitication Exchangs (< key He)
Al DPF R2
DFF Configuration Request ([..., b AN STE,
deyices
Errolies o suppor
respands DPP Configuration Responga ({ ..., sandConnSiatus Ju.) Stalus Cusry
immditaly
| DPP Canfiguration Confirm {f |- Ye
i Discover AP and atternpt to connect
serdConnStatus Configuralor Listens
_allribunpr:seﬂ: for Status far x
in Resporbe, DPP Status Cuery Result(iS-Monce, connectionStabus b rming
Configuralor
Erralles i% in i% in Firighed
Praovisianed e
dale.

Figure 11. Example Message Flow for Status Query
2.6 Reconfiguration

2.6.1 Overview

DPP reconfiguration allows a previously configured Enrollee to update its configuration via a known and trusted
Configurator. A reconfiguration exchange is between an Enrollee and a Configurator whose signing key the Enrollee
trusts. If this trust exists, the Enrollee and Configurator have already been introduced, and consequently, there is no need
for DPP Bootstrapping. Only the DPP Reconfiguration Authentication and DPP Configuration protocols are involved. The
reconfiguration message flows for infrastructure connectivity is shown in Figure 12. The DPP Reconfiguration
Authentication protocol is described in Section 6.5.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 38 of 188

Wi-Fi Easy Connect™ Specification v3.0 e

2.6.2 Triggers for Reconfiguration

There can be multiple reasons for an Enrollee to reinitiate a connection with its Configurator, for example, the Enrollee's
Connector may have expired and needs renewal. Alternately, a PSK or SAE password may have expired or changed.

Depending on the credential being used, an enrollee may determine the need for reconfiguration at different stages in its
network access lifecycle.

o WPA2 PSK/Passphrase - A STA using a WPA2 PSK or Passphrase follows the standard IEEE 802.11
procedures and an unsuccessful 4-way handshake using the provided PSK or Passphrase may trigger
reconfiguration

e WPA3 Password - A STA using a WPA3 Personal password follows the SAE authentication as per the IEEE
802.11 procedures and an unsuccessful SAE authentication may trigger reconfiguration

e DPP Connector - A STA using a DPP Connector attempts the Network Introduction Protocol as specified in
Section 6.6 and a failure with error STATUS_INVALID_CONNECTOR may trigger reconfiguration

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 39 of 188

Wi-Fi Easy Connect™ Specification v3.0

DPP reconfiguration messages

Enrollee

Configurator i Access Pomti

These may be co-located

Initial DPP exchange /

"OO0B Bootstrapping (QR, NFC, BT)"

“DPP

"DPP ConfigRequest"

The ConfigResp shall include a connector even if the
enrollee is being provisioned with SAE/PSK

"DPP ConfigResponse
(Connector for reconfig, [mac], [channel])"

"DPP ConfigResult"

Optional network discovery /

done only if the configObject for network
connectivity is using akm=dpp

"DPP Peer Disc Req"

"DPP Peer Disc Resp"

[T ——

Initial DPP Complete F

-some time later -

Reconfig Authentication exchange

/

"Unable to connect
(reconfiguration needed)"

ation signaling_/

Reconfig Announcement

Reconfig Announcement
(hash[C-sign key])

Wait 2 seconds

Reconfig Announcement
(hash[C-sign key])

" DPP Reconfig Authentication Request
(Transld, protoVersion, I-Connector, |-nonce)"

computes M = { cr + pr } * conn(Ci) and

Enrollee generates protocol key (pr, Pr),
ke = HKDF(I-nonce, "STRING", M.x)

" DPP Reconfig Authentication Response
(Transld, protoVersion, R-Connector, Pr,
enc[C-nonce, E-nonce,

The connection status allows enrollee to signal configurator
why it needs reconfiguration (could be for higher level config)

)

" DPP Reconfig Authentication Confirm
(enc[Transld, protoVersion, I-nonce, R-nonce, reconfig-flags]ke)"

computes M = { conn(Cr) + Pr } * conn(ci)
ke = HKDF(I-nonce, "STRING", M.x)

)

The reconfig-flags allows configurator to signal enrollee
on how to proocess the Config request and response

L

:Reccnf\g Authentication Complete

| |

I

Reconfiguration exchange /

"DPP Ct Regquest”

"DPP Configuration Response”

"DPP Configuration Result"

[Feconfiauration comoleta |
Complete F

Figure 12. Example Message Flow for DPP Reconfiguration

2.7 DPP Protocol Version

S

Starting with protocol version 2, the DPP protocol version number is included in DPP messages and the behavior of Peers

is affected by the version being used. To ensure that Peers can interoperate correctly, version negotiation is used in

applicable message exchanges. For the remainder of this document, the following version terminology is used and refers
to the version of the DPP protocol. Protocol Version values are given in section 8.1.1.18.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 40 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

2.7.1 Supported Version

The Supported version refers to the highest version of DPP that a device supports. A Peer that supports a given version
shall support all previous versions of DPP. If a Peer does not include a DPP version, it is assumed the Protocol Version is
setto 1.

2.7.2 Negotiated Version

DPP Peers shall negotiate a specific protocol version to use during a DPP protocol message exchange. The negotiated
protocol version determines the attributes and objects that are exchanged between Peers.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 41 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

3 Security

3.1 Properties

The DPP Authentication protocol provides authentication of a Responder to an Initiator and optionally authentication of the
Initiator to the Responder, and generates a shared key between the Initiator and Responder that is unpredictable and
pseudorandom. DPP allows a Configurator to provision an Enrollee to facilitate a secure connection to a network. A
consequence of successful DPP provisioning is trusted public keys that allow for a unique, pairwise secret key to be
established for every connection on the network.

3.2 Public Key Cryptography

3.2.1 Supported Public Key Cryptosystem

The only cryptosystem supported by DPP is elliptic curve cryptography (ECC). All elliptic curves used in DPP shall be
over fields with a characteristic greater than three, as defined in RFC 6090 with a co-factor of one (1) [4]. DPP devices
shall support elliptic curve Diffie-Hellman (ECDH) and have an ECDH Identity key. All network access keys
(netAccessKey(s), bootstrapping keys, signature and protocol keys shall use ECC [8]. All ECDH operations shall be
performed with compact output per RFC 6090 [4]. For signed introduction, the device shall support Elliptic Curve Digital
Signature Algorithm (ECDSA).

3.2.2 Notation

The following notations are used in this specification.

The elliptic curve E is a group of prime order p, with a generator G. Scalar values are indicated with lowercase and points
on the curve with uppercase. The addition symbol "+" when used on two scalars is arithmetic addition. When used on two
group elements, the addition symbol is point addition as defined by RFC 6090 [4]. The subtraction symbol "—" when used
on two elements is addition of an element and the inverse of another element. The multiplication symbol "*" when used on
two scalars is arithmetic multiplication. When used on a scalar and an element, the multiplication symbol indicates
repeated addition of the element with itself by the number of times indicated by the scalar.

Each point on the curve is an element of E. Key pairs consist of a scalar private key and a corresponding public key
whose value is the generator of the curve multiplied by the private key. For example:

Pub = priv* G

Each point on the curve has (x,y) coordinates. A complex element may be converted into a scalar by taking its x-
coordinate and ignoring the y-coordinate. For example:

val = Pub.x
SHA-256() is the SHA-256 hash function as specified in FIPS180-4 [17].
H() is a hash function used as a random function. The hash algorithm selection is described in section 3.3.
HMAC [53] is used to generate authenticated integrity checks and is used with the following notation:
digest = HMAC(key, data)
HKDF [6] is used for key derivation with the following notation:
key = HKDF(salt, info, ikm)
= HKDF-Expand(HKDF-Extract(salt, ikm), info, len)

where salt, ikm, HKDF-Extract(), and HKDF-Expand() info are as defined in RFC 5869 [6], and len, the length of the
resulting key in octets, is equal to the digest length of the hash function used with HKDF.

<> passed as a salt to HKDF indicates the salt-less invocation of HKDF.
© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 42 of 188

Wi-Fi Easy Connect™ Specification v3.0

Truncate-n(x) returns the left-most n bits of x if the length of x is greater than n. If the length of x is less than or equal to n,
Truncate-n(x) returns x.

Ceiling(x) returns the smallest integer greater than or equal to x.
AES-SIV is used to wrap cleartext into ciphertext, with the following notation:
ciphertext = {cleartext}k

Messages sent in DPP consist of type-length-value (TLV) tuples. When describing the contents of a message, the type
name is used to indicate the presence of a TLV of that particular type and a comma is used to separate multiple TLVs in a
single message. For example:

A-nonce, B-nonce

When describing calculations using the value of a TLV, the type name is used to indicate the particular TLV whose value
is used and concatenation of TLV values is denoted with the '|' symbol. For example: result = SHA-256(A-nonce | B-
nonce)

3.3 Cryptographic Suites

DPP provides for cryptographic agility by indicating the particular cryptographic suite of primitives to use in DPP
messages. Currently only cryptographic suite 1 is defined. Cryptographic suite 1 consists of the SHA2 family of hash
algorithms and AES-SIV. The particular instantiation of cryptographic primitives in cryptographic suite 1 depend on the
length of the prime of the elliptic curve per Table 4 .

NOTE: Other cryptographic suites can be defined in the future.

For interoperability purposes, all devices supporting cryptographic suite 1 shall also support the NIST P-256 elliptic curve,
see FIPS PUB 186-4 [19]. This means they shall also support SHA-256 [17] and AES-SIV-256 [2]. Table 4 defines the
cryptographic primitives used to support other elliptic curves.

The DPP protocol design binds the keys used in bootstrapping, authentication, and network connection in a manner that
mandates a single elliptic curve is selected for all devices in any given network. DPP devices shall use the NIST P-256
elliptic curve for their bootstrapping and protocol keys for interoperability unless a network is explicitly configured to be
used only by devices capable of using another common curve.

With cryptographic suite 1, the particular hash algorithm to use with the DPP protocols as H() and in HKDF(), the length of
the key for AES-SIV, and the size of the nonces used in the DPP Authentication protocol all depend on the length of the
prime, p, used in constructing the elliptic curve as shown in Table 4.

Table 4. Key and Nonce Length Dependency on Prime Length

Length of Prime Hash Algorithm AES-SIV Key Length Nonce Length
len(p) < 256 SHA-256 256 128
256 < len(p) < 384 SHA384 384 192
len(p) > 384 SHA-512 512 256

3.3.1 Point Representation

Points on the elliptic curve are transmitted in DPP protocol messages by converting both coordinates of the point into a
single octet string using the Element-to-Octet-String conversion technique of section 12.4.7.2.4 of [1]. The resulting octet
string, whose length is twice the length of the prime used in constructing the elliptic curve, is transmitted as the value of
the appropriate DPP attribute (see section 8.1.1); however, points on the elliptic curve are represented in uncompressed
form in JSON Web Keys in the Connector and the DPP Configuration object.

Upon receipt of an elliptic curve point in a DPP protocol message, the recipient reconstructs the point by converting the
octet string into a point using the Octet-String-to-Element conversion technique of section 12.4.7.2.5 of [1]. All received
points shall be verified to be on the elliptic curve by checking that the received coordinates satisfy the equation of the
curve, y2 = x3 + ax + b and are not the “point-at-infinity”.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 43 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

Compact output of an ECDH operation is a scalar value representing the x-coordinate of the point (see section 3.2.2).
When used as an input to a function, the scalar is first converted into an octet string by treating it as an integer and

converting it to a Ceiling(len(p)/8) octet string using the Integer-to-Octet-String conversion technique of section 12.4.7.2.2
of [1].

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 44 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

4 Data Structures

4.1 Public Keys

Bootstrapping keys shall only be used for the DPP authentication exchange.

Bootstrapping keys are the ASN.1 SEQUENCE SubjectPublicKeylInfo from [3]:

Algorithmldentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }
SubjectPublicKeylnfo ::= SEQUENCE {
algorithm Algorithmldentifier,
subjectPublicKey BIT STRING }

where the subjectPublicKey is the compressed format of the particular public key per [5]. For the DPP protocols, the
algorithm OBJECT IDENTIFIER is the object ecPublicKey (1.2.840.10045.2.1) and the OPTIONAL parameters shall be
present and shall be the OBJECT IDENTIFIER that defines the elliptic curve, for instance the object prime256v1
(1.2.840.10045.3.1.7).

Distinct keys, called network access provisioning keys, shall be used by Peers for network access. Network Access
Provisioning and Configurator Signature keys shall be encoded in JSON Web Key (JWK) format [14]. Points on the elliptic
curve are represented in uncompressed form in JSON Web Keys.

4.2 Connectors

A Connector is encoded as a JSON Web Signature (JWS) Compact Serialization of a JWS Protected Header (describing
the encoded object and signature), a JWS Payload, and a signature. JSON is a data interchange format (see [12]) that
encodes data as a series of data types (strings, numbers, Booleans, and null) and structure types, formatted as
name/value pairs.

Connectors are used as signed introductions that allow the Enrollee to obtain a trusted statement listing the devices on
the network with which the Enrollee is authorized to communicate. Connectors are also used for secure communication
between Enrollee and Configurator during reconfiguration.

The JWS Compact Serialization is a base64url encoding of each component, with components separated by a dot (*.”).
The JWS Protected Header is a JSON object that describes:

e The type of object in the JWS Payload specified as "dppCon"
e The identifier ("kid") for the key used to generate the signature
e The algorithm ("alg") used to generate a signature

The supported algorithms are given in [16]. All devices supporting DPP shall support the ES256 algorithm. Key and nonce
lengths shall be as specified in Table 4. The curve used for the signature may be different from the one used in DPP
Bootstrapping and DPP Authentication protocols.

The Connector authorizes the entity that possesses the netAccessKey to connect to a class of devices that support a
common set of attributes. The Configurator vouches for the two Peers to allow them to make network connections on the
network configured with complementary attributes. The netAccessKey is a public key signed by the Configurator and that
a device uses to establish secure connectivity to another device.

Two devices that are provisioned to the same network verify the origin of their Connectors by using the verification
scheme in ECDSA [8] section 6.6.5. If the verification succeeds, the devices may use their network keys to agree on a
PMK and a PMKSA, which is followed by traditional WPA2 or WPA3 mechanisms for Wi-Fi communication.

When two devices that exchange and successfully validate Connectors—for example a STA is provisioned with a
Connector group attribute matching the AP’s groupld and netRole of the STA or Client, and the AP is provisioned with a
Connector group attribute containing a matching groupld and a netRole of the AP or GO to allow connection to all devices

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 45 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

on the network—a shared PMK may be derived by both parties using the other party’s netAccessKey and the private
analog to its own netAccessKey. This PMK may be used with, for example, the 4-way Handshake from [1].

4.2.1 Connector Signing

The Configurator possesses a signing key pair (c-sign-key, C-sign-key). The c-sign-key is used by the Configurator to sign
Connectors, whereas the C-sign-key is used by provisioned devices to verify Connectors of other devices are signed by
the same Configurator. Connectors signed with the same c-sign-key manage connections in the same network.

The Configurator sets the public key correspondingto the enrollee? protocol key as the netAccessKey in the Connector
data structure, and assigns the DPP Connector attribute depending on the Peer devices with which the enrollee will be
provisioned to connect.

42.1.1 Digital Signature Computation

The procedures to compute the digital signature of a Connector and the procedure to verify such signature are described
in FIPS-186-4 [19] and are specified in this section. The supported signing algorithms are given in [16]. All devices
supporting DPP shall support the ES256 algorithm. Key and nonce lengths shall be as specified in Table 4. The curve
used for the signature may be different from the one used in DPP Bootstrapping and DPP Authentication protocols.

The signature is performed over the concatenation of the base64url encodings of both the JWS Protected Header and the

JWS Payload, separated by a dot (“."), see section 5.1 of [14].
The data passed to the signature algorithm is:

base64url (UTF8(JWS Protected Header)) | “.” |
base64url (JWS Payload)

where UTF8(s) is the UTF8 representation of the string “s”.
If “sig” is the result of the signature, the Connector is then:

base64url (UTF8(JWS Protected Header)) | “.” |
base64url (JWS Payload) | “.” |
base64url(sig)

4.2.2 Encoding
The JSON encoding for the DPP Connector body object is given in Table 5.

Table 5. DPP Connector Body Object Format

Parameter Name Type Value Scope Description
(see Section 1.4)

DPP Connector dppCon OBJECT M This represents the JWS Payload of
Body object the Connector.
groups? ARRAY M The groups array comprises an array
of group objects.
groupld STRING Freeform string or wildcard M A string identifying the identity of the
setto "*" group in the group object.

The owner of this Connector is allowed
by the Configurator to connect to
devices in this group.

netRole STRING sta, ap, configurator M The role assigned to the owner of this
Connector in this group. These values

2Note that the enrollee protocol key will either be the initiator Protocol key, PI, or the Responder Protocol key, PR depending
on the device that initiates the DPP Authentication sequence being the Enrollee or Configurator.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 46 of 188

Wi-Fi Easy Connect™ Specification v3.0
ol
Parameter Name Type Value Scope Description

(see Section 1.4)

are used with the wi-fi_tech=infra case.
Other specifications may define
different netRole values for other wi-
fi_tech values specified in Table 6.

netAccessKey JWK M JSON web key with encoding defined

in RFC 7517 [15]; "key_ops" and "use"
objects in a "netAccessKey" object
shall not be present. Note that JSON
Web Keys use an uncompressed

format.
expiry STRING O Timestamp for net access key expiry,
see section 4.3.5.5. Optionally present.
version NUMBER C The version member is conditionally

included by a Configurator when the
protocol version it supports is 3 or
greater.

In case of DPP Configuration, version
shall be set to the version number that
the Enrollee indicated during the DPP
Authentication protocol run that
preceded the DPP Configuration
protocol run during which the Enrollee
is going to be configured with this
Connector. Version shall be setto 1 in
case the preceding DPP
Authentication Request or DPP
Authentication Response message
from the Enrollee did not contain a
Protocol version field.

In case of reconfiguration, version in
the C-Connector shall be set to the
highest version that the Configurator
supports.

Notes:
1. At least one group object shall be present in the groups object.

An example of a JSON-encoded DPP Connector Body Object is given in Figure 13:
{

‘'groups'':
[
{"groupld"”:"home",""netRole":"sta"},
{"groupld":"cottage", " netRole":"sta"}
1.
""netAccessKey"':
{
"kty':"EC",
“crv':""P-256",
X" UXJ-zV2IEiTH8XwyA9i jpsL6xyLvDi IBthrHO8ZVxwmpA™,
"y s "LUsDBmMN7nv-LCNn6FBOXKsKpLGJiVpY_knTckGgsgeU™”
3.
“expiry':"2019-01-31T22:00:00+02:00"

Figure 13. Example DPP Connector Body Object

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 47 of 188

Wi-Fi Easy Connect™ Specification v3.0

The object is signed and encoded as a JWS compact serialization as described in RFC 7515 [14]. The JWS Protected
Header for the DPP Connector Body object shall contain the "typ", "kid" and "alg" objects. The "typ" value shall be
“dppCon”, denoting the DPP Connector Body object, see Table 5. The value of "kid" shall be the base64url encoded SHA-
256 hash of the uncompressed form, see [5] ANSI X9.63, of the public signing key of the configurator. The value of "alg"
shall be the algorithm used to generate a signature.

An example of a JWS Protected Header using the public signing key used in the example DPP Connector Body object in
Figure 13 is shown in Figure 14:

{
“typ':"dppCon™,
"kid":""kMcegDBPmNZVakAsBZ0z0oCsvQjkr_nEAp9QuF-EDmVE",
"alg":"ES256"

}

Figure 14. Example JWS Protected Header

An example DPP Connector, the JWS compact serialization of the JWS of the DPP Connector Body object "dppCon" of
Figure 13 with all whitespace removed, using the JWS Protected Header of Figure 14 with all white space removed, is
shown in Figure 15:

eyJOeXAi0iJkcHBDD24iLCIraWQi0i JrTWNIZORCUGLOWIZhaOFzQ 1 pPek9vQ3N2UWprc 1 QURUFWOXVGLUVEBVZF Liwi YWxn 1 jo
iRVMYNTY i FQ

eyJIncm91cHMiOlt7 Imdyb3VwSWQiOiJob21 11 iwibmVOUm9sZS16INNOYSJIOLHs123IvdXBJIZC16 ImNvdHRhZ2UiLCIJuZXRSb2x
11j0oic3RhIN1dLCIJuZXRBY2NIc3NLZXkiOnsia3R51 JoiRUMILCIjcnYiO1JQLTIINIIsIngiOiJdYail6VjJIpRWI I0OFh3eUESaW
pwcOw2eH IMdkRpSUJ0aHJ 1TzhaVnh3bXBB 1 iwieS161kxVcORCbW43bnYETENubjZmQmOYS3NLCEXHSmIWcFIfa25UY2tHZ3NnZ
VUi fSwiZXhwaxJ51 joiMjAx0SOwMS0zMVQyMjowMDowMCswMjowMCJ9

8FJISNCpDjV5BEFFfMIQEbBNTaHx2L6c_22UvroKY j tAw88VFVEUWiI ruECUSICUVFqv1yDEE4RIVAT Iw3auDh IMw

Figure 15. Example DPP Connector (with line breaks for display purposes only)
4.3 DPP Configuration Request

4.3.1 General

A Configurator provisions an Enrollee with information to discover a network as well as credentials to establish secure
access to the network. An enrollee includes a DPP Configuration Request object in the configuration request. A
Configurator processes the configuration request and includes one or more DPP Configuration objects in the response to
the Enrollee. The content of the DPP Configuration object is described in the subsections below.

4.3.2 Wi-Fi Technology

The Wi-Fi Technology parameter specified in Table 6 identifies the Wi-Fi technology of the policy that is to be provisioned
within the Enrollee device.

The Enrollee shall set the value to indicate the Wi-Fi technology to be provisioned in the Configuration Request object.

The Configurator shall set the value of this parameter in the DPP Configuration object depending on the Wi-Fi Technology
that is in operation between the Enrollee and the Configurator.

The Enrollee reads the value of this parameter to determine the type of provisioning system to use.
The encoding of the Wi-Fi Technology object is given in sections 4.4 and 4.5.2.

Table 6. Wi-Fi Technology parameter assignment

Parameter Name Value Description
Wi-Fi Technology wi-fi_tech infra Assigned for use in this specification
map Assigned for use outside this specification

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 48 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Parameter Name Value Description

inframap Assigned for use outside this specification

4.3.3 Network Role

The Network Role is included by the Enrollee in the Configuration Request object to indicate the network role to be
provisioned. The Network Role indicates how the Enrollee will operate in the network. For example, the Network Role
indicates whether the Enrollee acts as STA or an AP.

The Enrollee shall include the Network Role parameter in the DPP Configuration Request object.

The Configurator includes parameters in the DPP Configuration Object according to the Network Role provided by the
Enrollee.

The encoding of the Network Role parameter is given in sections 4.4 and 4.5.2.
4.3.4 DPP Discovery

The DPP Discovery object contains optional operating or discovery information such as SSID, operating channel and
operating band.

The Configurator sets the value of this node to the values of a Wi-Fi network (for example SSID and channel) that are to
be provisioned within the client device.

The Enrollee reads the value of this object and provisions the Wi-Fi network information.

The encoding of the Discovery object is given in section 4.5.2.
434.1 SSID

If the Enrollee being provisioned indicates a Protocol Version value of 1, the SSID in the Discovery object shall be
encoded as a UTF-8 string.

If the Enrollee being provisioned indicates a Protocol Version value of 2 or higher, the SSID in the Discovery object shall
be encoded as either a UTF-8 string or an BASE64URL encoded string of octets. If the Network Role of the Enrollee is an
AP, the SSID in the configuration object shall be encoded as UTF-8. If the Network Role of the Enrollee is a STA or
Configurator, the SSID in the configuration object shall be encoded as either a UTF-8 string or a BASE64URL encoded
string.

The ssid parameter contains a UTF-8 encoded SSID. The ssid64 parameter contains a BASE64URL encoded SSID.
The ssid_charset parameter is optionally present when the SSID is encoded using BASE64URL. The ssid_charset
parameter indicates the character set with which the SSID is encoded.

An Enrollee AP that is configured using DPP shall set the UTF-8 SSID field in the Extended Capabilities element to 1 in all
Beacons and Probe Response frames (see [1]).

4.35 Credential

The Credential object contains the credential information provisioned in the Enrollee to obtain secure network access.

The credential information included in the configuration is dependent on the value of the Authentication and Key
Management Type (AKM) parameter included in the Configuration Object.

If the Enrollee indicates Protocol Version value of 2 or higher in the Configuration Request object, the AKM parameter
value may alternatively comprise a list of one or more AKM suite selectors (see section 6.3.6), delimited by a "+"
character.

The encoding of the DPP Credential object is given in section 4.5.2.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 49 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

4.35.1 Connector

If the negotiated version is 1, the Connector is present when the AKM parameter contains "dpp" or a DPP AKM suite
selector. If the negotiated version is 2 or higher, the Connector shall always be present. The Configurator provisions the
Connector on the Enrollee.

The Configurator derives and sets the Connector in each DPP Configuration object.
The Enrollee reads the Connector and provisions the configuration.
The encoding and signing of the Connector object are given in 4.2.

NOTE: In addition to obtaining secure network access as specified above for the Credential object, the Connector is also
used for secure communication between Enrollee and Configurator during reconfiguration, see section 6.5.4.

4.3.5.2 C-sign-key

If the negotiated version is 1, the C-sign-key is present when the AKM parameter contains "dpp" or a DPP AKM suite
selector. If the negotiated version is 2 or higher the C-sign-key shall always be present. The C-sign-key is the base64-
encoded public signing key of the Configurator.

The Configurator derives and sets the C-sign-key in each DPP Configuration object.
The Enrollee reads the C-sign-key and provisions the configuration.

The encoding of the C-sign-key is given in 4.5.2.
4.3.5.3 Privacy-protection-key

If the negotiated version is 2 or higher, the Privacy-protection-key shall always be present. The Privacy-protection-key is
the base64-encoded public privacy protection key of the Configurator.

The Configurator derives and sets the Privacy-protection-key in each DPP Configuration object.
The Enrollee reads the Privacy-protection-key and stores it for use in reconfiguration, see section 6.5.2.

The encoding of the Privacy-protection-key is given in 4.5.2.
4.35.4 WPA2 PSK

When configuring the Enrollee for a WPA2-Personal BSS, the AKM parameter contains "psk" or the PSK AKM suite
selector, indicating that a WPA2-Personal pre-shared key is present. The PSK is either a string of 8-63 characters or a
string of 64 hex digits.

The Configurator sets the value of the PSK or Passphrase in each DPP Configuration object.

The Enrollee reads the value of the PSK or Passphrase and provisions the configuration.
4355 WPA3 Password

When configuring an Enrollee for a WPA3-Personal BSS, the AKM parameter contains "sae" or an SAE AKM suite
selector, indicating that an SAE password is present. The password is a string.

The Configurator sets the value of the SAE password in each DPP Configuration object.

The Enrollee reads the value of the SAE password and applies it to its configuration.
4.3.5.6 WPA3 Mixed Mode

When configuring an Enrollee for WPA3 mixed mode operation, the AKM parameter contains both "psk" and "sae", or
both corresponding AKM suite selectors, indicating that a password is present, which may be used for negotiating a BSS

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 50 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

supporting both WPA2-Personal or WPA3-Personal connections. The properties defined for these elements are as
defined in 4.3.5.4 and 4.3.5.5.

The Configurator sets the value of the WPA2 Passphrase or SAE password in each DPP Configuration object.

The Enrollee reads the value of the WPA2 Passphrase or SAE password and applies it to its configuration accordingly.

4.3.5.7 Combined DPP AKM and Legacy Modes

AKM parameter values containing "dpp", "sae" and optionally "psk", or the corresponding AKM suite selectors, are used to
indicate that both the DPP AKM parameters (Connector, C-sign-key) and legacy WPA2/WPA3 parameters (WPA2-Personal
PSK, WPA2-Personal passphrase, or WPA3-Personal (SAE) password) are present and the DPP Configuration object can
be used for both network types.

The Configurator sets the parameter values as indicated in the previous sections for both DPP and legacy cases.

The Enrollee reads the values and applies them to its configuration accordingly as indicated in the previous sections for
both DPP and legacy cases. Note that the Enrollee might not implement SAE (WPA3-Personal). If that is the case, the
Enrollee is allowed to enable DPP and WPA2-Personal without SAE when the provisioned AKM parameter value contains
all three of "dpp", "psk" and "sae", or their corresponding AKM suite selectors.

4.3.5.8 Other Modes

If the Enrollee being provisioned indicates Protocol Version value of 2 or higher, the AKM parameter value might comprise
an explicit list of AKM suite selectors, potentially including those corresponding to Fast Transition, stronger hash
functions, etc. If the Enrollee does not support certain specified AKMs, they are ignored.

If an AKM parameter value contains a PSK AKM suite selector together with any other AKM suite selector, then an SAE
suite selector shall also be present.

4.3.5.9 Enterprise Credentials

If the Enrollee being provisioned indicates Protocol Version value of 2 or higher, an AKM parameter value containing
"dotlx" indicates the presence of Enterprise Credentials for use with an 802.1X/EAP-protected network. The JSON-
encoding of Enterprise Credentials object is given in Table 7.

The Enterprise Credentials shall contain a PKCS7 bag of certificates containing, at a minimum, the end entity certificate
assigned to the Enrollee. Optionally, Enterprise Credentials may contain additional certificates used to authenticate an
EAP server, a server name to use to restrict certificates signed by public CAs, and a list of EAP method types used to
restrict the Enrollee's enterprise credential to particular EAP methods.

Table 7. Certificate Credentials Object Format

Parameter Name Type Value Scope Description
(see Section 1.4)

Enterprise entCreds OBJECT M

Credentials
certBag STRING M A base64-encoded DER-encoded

cryptographic bag of certificates that
includes, at least, an end entity
certificate for the Enrollee. It may
also contain additional certificates
necessary for validating trust. The
format of this bag is a PKCS#7
object defined in [46].

caCerts STRING (0] This field is present when the EAP
server has a certificate with a
different root of trust than the
certificate returned in the pkcs?7.
When present, it shall contain a
base64-encoded cryptographic bag

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 51 of 188

Wi-Fi Easy Connect™ Specification v3.0 wilDl
<«
Parameter Name Type Value Scope Description

(see Section 1.4)
of certificates that contains, at least,
the certified root of trust for the EAP
server. It may also contain
additional certificates necessary to
form a chain from the EAP server
certificate to the trusted root. The
format of this bag is a PKCS#7
object defined in [46].

trustedEapServerName = STRING (0] This field is present if the Enrollee
should additionally validate the
domain name (SubjectAltName
dNSName if present, otherwise
SubjectName CN) of the server
certificate in the received EAP
exchange.

eapMethods ARRAY (0] A list of EAP method types suitable
for the Enterprise Credential.

methodType INTEGER C The Type value of the EAP method
from [48] to be used with the
Enterprise Credential.

4.3.5.10 Expiry

The expiry defines the expiry date for the DPP Client's Connector information. After the expiry date, the information is no
longer valid and may be updated by the Configurator when a further connection between an Enrollee and a Configurator
is established through reconfiguration (see Section 6.5).

The date and time is formatted as described in [21].
The Configurator sets the value of expiry to a credential expiry date in each DPP Configuration object.

The Enrollee reads the expiry date, and provisions the configuration. If there is no expiry value, then it is assumed that
there is no expiry date for the information.

The Enrollee uses the expiry date to indicate whether the credentials received by the Configurator are valid. The Enrollee
compares the expiry to the current time to evaluate the validity of the credentials. The Enrollee shall not use expired
credentials except to initiate a reconfiguration exchange with the Configurator to renew its credentials.

4.4 DPP Configuration Request Object

The DPP Configuration Request object is a JISON (JavaScript Object Notation) encoded data structure, see RFC 7159
[12], that is transmitted as an attribute in the DPP Configuration Request frame.

The JSON encoding for the DPP Configuration Request Object is defined in Table 8. The Configuration Attribute object
shall contain Device Name, Wi-Fi Technology, and Network Role attributes. The MUD URL [41] and Band Support , and
additional 3rd party attributes 4.4.1 are optionally included. The Configurator could use MUD to determine the appropriate
network or group configuration for the Enrollee.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 52 of 188

Wi-Fi Easy Connect™ Specification v3.0

Telianc”

Table 8. DPP Configuration Request Object

Parameter Name Type Value Scope Description
(see Section
1.4)

DPP configRequest OBJECT M

Configuration

Request object

Device Name name STRING M

Wi-Fi Technology = wi-fi_tech STRING Infra M The type of network with which the Enrollee wishes to
be enrolled in. The wi-fi_tech value indicates which
DPP Configuration Request object parameters are
present beyond the mandatory name and wi-fi_tech
and what values those parameters use. This
specification covers the wi-fi_tech=infra case.

Network Role netRole STRING sta, ap, M The role that the Enrollee wishes to obtain. These

configurator values are used with the wi-fi_tech=infra case.

MUD URL mudurl STRING ¢} A Universal Resource Locator for a Manufacturer
Usage Description per [41]. This value is optionally
included when the Enrollee has been manufactured
with a MUD URL.

Band Support bandSupport ARRAY (0] A list of band parameters that are supported by the
Enrollee

Band Band INTEGER (0] An integer indicating the band as expressed as the
Operating Class. The Operating Class values are given
in [1].

CertificateRequest = pkcs10 STRING O A base64-encoded DER-encoded CertificateRequest
formatted per PKCS10 [45]. The usage of the
CertificateRequest parameter is described in section
6.4.3.

OCF Information org.openconnectivity = OBJECT O An attribute object to be used for Open Connectivity

Foundation (OCF) integration with DPP onboarding,
allowing for the passing of additional information
between the enrollee and the configurator that may be
leveraged by OCF devices. The additional information
contained in this object is defined by the Open
Connectivity Foundation.

An example of a JSON-encoded DPP Configuration Request is given in Figure 16.

{

"name' :"My Device",

"wi-Fi_tech":"infra",
"netRole":"sta"

}
Figure 16. Example DPP Configuration Request Object

4.4.1 Optional 3rd party attributes in Configuration Request Object

A DPP Configuration Request Object may contain additional attributes to help DPP peers in exchanging information that
can be used by other applications. Note that a Configuration Request object that includes any 3rd party optional attributes
cannot exceed the maximum payload size of the GAS initial request frame (see section 8.3) . This section describes
optional attributes can be included in the Configuration Request Object.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 53 of 188

Wi-Fi Easy Connect™ Specification v3.0

All additional properties and their sub-properties that are defined in the DPP configuration request object should be
identified by path names that identify their purpose or organization. These path names should be reasonable in length and
not exceed 80 characters, in order to ensure that the Configuration Request Object can be sent in the DPP Configuration
Request frame. An example convention for path names is to use domain names, such as "org.openconnectivity."

The goal of including 3rd party information in the DPP configuration exchange is to enable additional functionalities that
are independent of DPP's existing functionality. Accordingly, any 3rd party attributes that are included in the DPP
configuration request object shall not duplicate, replace, or preclude any existing functionality of DPP as defined in this
specification.

4411 OCF Information

The optional OCF Information configuration attribute object allows for inclusion of additional information, relevant to OCF
devices. The information included within the OCF Information object is defined by the Open Connectivity Foundation. For
the definition of this information and its use within OCF, see [OCF_SPECIFICATION (Forthcoming)].

4.5 DPP Configuration Object

451 Overview

The DPP Configuration object is a JSON (JavaScript Object Notation) encoded data structure, see RFC 7159 [12], that is
transmitted as an attribute in the DPP Configuration Response frame.

Binary data used in the DPP Configuration object, such as keys and digital signatures, is encoded using base64url (see
RFC 4648 [13]). The JWT (JSON Web Token) procedures described in RFC 7517 [15] are used to encode keying
material.

The DPP Configuration object parameters are given in Table 9. The Configurator processes the DPP Configuration
attributes and creates a DPP Configuration object to be transmitted to the Enrollee. For an Enrollee to be configured as a
STA or AP, processing of the DPP Configuration attributes and mapping to values in the DPP Configuration object by the
Configurator are out of scope for this specification.

Table 9. DPP Configuration Object Parameters

Parameter Name Type Value Scope Description
(see Section 1.4)

DPP configurationObject OBJECT M
Configuration
object
Wi-Fi wi-fi_tech STRING infra M The wi-fi_tech value indicates which DPP Configuration
Technology Attribute object parameters are present beyond the
object mandatory wi-fi_tech and what values those parameters
use. This specification defines the wi-fi_tech=infra case.
Service svc STRING O Optional parameter depending on the value of wi-
fi_tech.
Discovery discovery OBJECT M
object:
SSID ssid STRING UTF-8 M The SSID for the ESS, encoded as a UTF-8 encoded
encoded string.
string
SSID64 ssid64 STRING BASE64URL The SSID for the ESS, encoded as a BASE64URL
encoded string of octets.
string
SSID ssid_charset INTEGER = MIBenum The value of the character set that would be used to
character set convert the ssid64 octet string into characters (if

known). MIBenum values for character sets can be

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 54 of 188

Wi-Fi Easy Connect™ Specification v3.0

Parameter

Credential
object
Authentication

and Key
Management

Type

Pre-shared
key

WPA2
Passphrase
and/or SAE
password
DPP
Connector

C-sign-key

Privacy-
protection-key

Enterprise
Credentials

OCF
Information

Name

cred

akm

psk_hex

pass

signedConnector

csign

ppKey

entCreds

org.openconnectivity

Type

OBJECT

STRING

STRING

STRING

STRING

JWK

JWK

OBJECT

OBJECT

Value

psk, dpp,
sae,
psk+sae,
dotlx,
dpp+sae,
dpp+psk+sae
or (only if
Enrollee
indicates
Protocol
Version
value of 2 or
higher), a list
of one or
more AKM
suite
selectors,
delimited
with a "+"
character

Scope
(see Section 1.4)

ol
Description

found in https://www.iana.org/assignments/character-
sets/character-sets.xhtml.

The authentication type(s) for the network:

"psk" indicates one or more of the PSK and FT-PSK
AKMs defined in [1] (typically at least "00-0F-AC:2" for
interoperability)

"sae" indicates one or more of the SAE and FT-SAE
AKMs defined in [1] (typically at least "00-OF-AC:8" for
interoperability)

"dot1x" indicates one or more of the IEEE Std 802.1X
AKMs defined in [1] (typically at least "00-OF-AC:1" for
interoperability)

"dpp" indicates one or more of the DPP and FT-DPP
AKMs defined in section 8.4.2(typically at least "50-6F-
9A:2" for interoperability)

When a list of AKM suite selectors is provided, each
AKM suite selector (OUI and Type) is encoded as a 4-
octet hex-encoded value without internal delimiters, e.g.
506F9A02.

Pre-shared key encoded in hex. Conditionally present
when akm parameter value contains "psk" or a PSK
AKM suite selector.

WPAZ2 or SAE passphrase. Conditionally present when
akm parameter value contains psk or "sae", or a PSK
and/or SAE AKM suite selector.

DPP Connector as a JWS, see section 4.2. Present
when akm parameter value contains "dpp", or a DPP
AKM suite selector or if the negotiated version is 2 or
higher.

Configurator public key; "key_ops" and "use" objects in
a "csign" object shall not be present. Present when akm
parameter value contains "dpp", or a DPP AKM suite
selector or if the negotiated version is 2 or higher. Note
that JSON Web Keys use an uncompressed format.

Public Configurator privacy protection key, see section
6.5.2, that uses the same curve as the C-sign-key.
Present when the negotiated version is 2 or higher.
Note that JSON Web Keys use an uncompressed
format.

Enterprise credentials for use when the akm parameter
contains "dot1x".

An attribute object to be used for Open Connectivity
Foundation (OCF) integration with DPP onboarding,
allowing for passing of OCF response information from

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 55 of 188

https://www.iana.org/assignments/character-sets/character-sets.xhtml
https://www.iana.org/assignments/character-sets/character-sets.xhtml

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

Parameter Name Type Value Scope Description
(see Section 1.4)
the Configurator to the Enrollee. The additional

information contained in this object and its use is
defined by the Open Connectivity Foundation.

4.5.2 Optional 3rd party attributes in Configuration Object

A DPP Configuration Object may contain additional attributes to help DPP peers in exchanging information that can be
used by other applications. This section describes optional attributes that can be included in the Configuration Object.
Note that a Configuration Object that includes any 3rd party optional attributes cannot exceed the maximum length of the
GAS response, including maximum allowed GAS fragments, as defined by IEEE (see section 8.3). This section describes
optional attributes can be included in the Configuration Request Object.

All additional properties and their sub-properties defined in the DPP configuration object should be identified by path
names that identify their purpose or organization. These path names should be reasonable in length and not exceed 80
characters, in order to limit the size of the DPP Configuration Object.

Any 3rd party attributes that are included in the DPP configuration object shall not duplicate, replace, or preclude any
existing functionality of DPP as defined in this specification.

45.2.1 Open Connectivity Foundation (OCF) Information

The optional OCF Information configuration attribute object allows for additional response information that can be
leveraged by OCF devices. The information that is included within the object is defined by the Open Connectivity
Foundation. For the definition of this information and its use within OCF, see [OCF SPECIFICATION (Forthcoming)].

45.3 Encoding

The JSON encoding of the DPP Configuration object described in section 4.5 is given in Table 9.
An example of a JSON-encoded DPP Configuration object is given in Figure 17.

{
"wi-fi_tech":"infra",
"discovery":

"akm':"'dpp",

"'signedConnector":
"eyJ0eXAi0iJkcHBDb24iLCIraWQiOiJrTWNIZORCUG10WIZhaOFzQlpPek9vQ3N2UWprc I 9uRUFWOXVGLUVEDVZF I iwi
YWxn1jJoiRVMyNTY 1 fQ.eyJdncm91cHMiOlt7 Imdyb3VwSWQiOiJob21 1 1 iwibmVOUmM9sZS161InNOYSJI9LHs1Z3JvdXBJZC
16 ImMNvdHRhZ2U i1 LCIuZXRSb2x11joic3RhIN1dLCIUZXRBY2NIc3NLZXkiOnsia3R51 joiRUMILCIjcnYiOiJQLTIINI I
sIngiOiJYail6VjJIpRWI10Fh3eUES5aWpwcOw2eHIMdkRpSUJOaHJ 1 TzhaVnh3bXBBI iwieS161kxVcORCbW4A3bnYLTENuU
bjZmQm9YS3NLCEXHSmIWCF1fa25UY2tHZ3NNZVU i FSwiZXhwaXJ5 1 joiMjAx0SOwMS0zMVQyMjowMDowMCswMjowMCJ9 .
8FJSNCpDjVv5BEFFfmIgEbBNTaHx2L6c_22UvroKY j tAw88VFvEUWI ruECUSICUVFqv1yDEE4RJIVAT Iw3auDh IMw'",

'csign™:

{

"kty":"EC",

crv':"pP-256",

X" :""MKBCTNIcKUSDi 111ySs3526iDZ8AiTo7Tu6KPAqQv7D4™,
"y" "AEE16SRW2Y i LUrNSvTvVHUhp7x8Px 1tmWWIbbM4 1 FyM™ ,
"kid":""kMcegDBPmNZVakAsBZ0z0oCsvQjkr_nEAp9QuF-EDmVE™

}

pKey":

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 56 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

"kty" UECT,
'crv''I"P-256",
XXX _ZUuJR9ONMDSb54C_okhGiJ70jCZ0IWOU9mM8zAxguUru*,
"y' o "FekmbhyGi i80amM_REV5sTOG3-s11H6MDpZ8TSKnb7c'”
}
}
}

Figure 17. Example DPP Configuration Object

4.5.4 DPP Reconfig Authentication Objects

An Enrollee can request a DPP reconfiguration with its Configurator if the configuration it has is either outdated or invalid.
During the reconfiguration exchange, an Enrollee uses the DPP Connection Status object to inform the Configurator about
why it is requesting the reconfiguration. The Configurator uses the Reconfiguration Flags attribute, see section 8.1.1.22, to
indicate to the Enrollee how to process the new configuration that it will provide to the Enrollee.

The DPP Connection Status object is specified in Section 6.4.5.2

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 57 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

5 Bootstrapping of Trust

5.1 Overview

Bootstrapping keys shall be transmitted out-of-band between the entities prior to performing the DPP protocol. The
manner in which the bootstrapping keys are transferred shall allow the recipient to gain a certain amount of trust that the
public key obtained belongs to the transmitting device. A device shall use a distinct pair of keys for each bootstrapping
method it supports. For each such pair, the public key is the bootstrapping key for the specific bootstrapping method.

A table mapping the hash of the bootstrapping key to the pair associated to the specific bootstrapping method shall be
maintained by a device. This table shall be called the bootstrapping table, and its entries shall be called bootstrapping
entries.

Network access provisioning keys do not need bootstrapping because they shall only be transferred through encrypted
DPP protocol messages after authentication.

Regardless of the technique used to bootstrap trust, the received public key shall be validated as specified in section
3.3.1. Once validated, all bootstrapping keys shall be stored in a canonical representation as DER-encoded ASN.1
SubjectPublicKeylnfo constructed as specified in section 4.1. If the bootstrapping technique does not exchange keys in
this format, the keys shall be put into this format before being used in the DPP Authentication protocol.

5.2 Bootstrapping Information

Regardless of the bootstrapping method, the public bootstrapping key in the format of ASN.1 SEQUENCE
SubjectPublicKeylnfo, as described in section 4.1, shall be included to facilitate DPP Authentication. A device
implementing version 2 or higher of DPP shall also include the version (Section 8.1.1.18) in the bootstrapping information.

The device may optionally include additional bootstrapping information that may be used in authenticating and
provisioning the Peer. While these fields are optional, devices are recommended to include them to allow optimized
device discovery at the beginning of the DPP Authentication exchange. For example, the device should include:

o A small list of global operating class/channel pairs (ideally only a single channel)
e The device's MAC address

If the global operating class/channel list is included in the bootstrapping information, the device indicates that it shall be
listening on one of the listed channels for other devices to initiate the DPP Authentication exchange. If this list is not
included, and the bootstrapping information indicates that the device supports only Protocol Version 1, the Initiator shall
iterate over all available channels. Iteration over a large number of channels adds significant extra delay in the DPP
Authentication exchange; therefore, devices using QR Code, BLE, or NFC bootstrapping are recommended to include a
single channel or at most a short list of possible channels in the bootstrapping information.

5.2.1 Bootstrapping Information Format

The bootstrapping information is transmitted as a URI according to RFC 3986 [20] or as a Bootstrap Information attribute
in PKEX and is formatted by the dpp-gr and pkex-bootstrap-info ABNF rules:

dpp-qr = “DPP:” *optional-fields public-key “;;”

pkex-bootstrap-info = information

optional-fields = reserved-field / unreserved-field

reserved-field = (channel-list / mac / information / version / host / supported-curves) ';" ;
specified in this spec

channel-list = “C:” class-and-channels *(*“,” class-and-channels)

class-and-channels = class “/” channel *(*,” channel)

class = 1*3DIGIT

channel = 1*3DIGIT

mac = “M:” 6hex-octet ; MAC address
hex-octet = 2HEXDIG
information = “1:” *(%x20-3A / %x3C-7E) ; semicolon not allowed

version = "V:" 1*ALPHANUMERIC ; supported DPP version with value from Table 31 in Section 8.1.1.18

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 58 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

host = "H:"™ 1*255(DIGIT / ALPHA /7 . / "-" / ":'") ; semicolon not allowed
supported-curves = "B:" 1*HEXDIG ; supported curves as bitmap of Figure 18
ALPHANUMERIC = ALPHA / DIGIT

unreserved-field = dpp-token-pair ';"

dpp-token-pair = unreserved-token “:” *(%x20-3A / %x3C-7E) ; semicolon not allowed
unreserved-token = 1*ALPHA; “M”, “C”, “K”, “I1”, "H", "B" are not allowed token names for
extensions

public-key = “K:” *PKCHAR ; DER of ASN.1 SubjectPublicKeylInfo encoded in ‘“base64” as per [13]
PKCHAR = ALPHANUMERIC 7/ %x2b / %x2f / %x3d
DIGIT = %x30-39 HEXDIG = DIGIT /7 "A™ / "B™ /7 "C"™ / "D"™ / "E™ / "F" ALPHA

The reserved-field ABNF rule specifies tokens specified by this specification and at most one instance of each of the
reserved-field token can be included in the bootstrapping information. The channel-list ABNF rule allows a list of IEEE
802.11 global operating class and channel (Annex E of [1]) value pairs to be specified. The MAC ABNF rule expresses the
MAC address as a string of six hex-octets. The information ABNF rule allows freeform information to accompany the
public key. The version ABNF rule specifies the DPP version supported by the device. The host ABNF rule may be
present in the DPP bootstrapping URI of an Enrollee that supports DPP over TCP/IP and specifies the IP address/port
number of that Enrollee , where port number may be omitted if the Enrollee uses the standard port number.

The bootstrapping information may be extended in future updates of the technical specification. Devices parsing this
information should ignore unknown semicolon separated components in the dpp-gr and pkex-bootstrap-info instantiations
to be forward compatible with such extensions.

The supported-curves ABNF rule specifies all the curves that the device supports for Configurator signing and for Network
Access Keys, including the curve of the bootstrapping key in the same bootstrapping URI, by using the bitmap of Figure
18. A 1-valued bit in the bitmask means that the curve is supported by the device and a 0-valued one means that it is not.
The bitmap of Figure 18 shows an array of two 4-bit nibbles. Each nibble is encoded as a hexadecimal character. More
nibbles may be appended in the future. Trailing zero-valued nibbles shall never be present. Curves that are not
represented in the bitmask due to the omission of trailing zero-valued nibbles are not supported by the device. All
reserved bits shall have the value 0. By way of example, "B:1;" means that the device supports only curve P-256, while
"B:12;" means that the device supports P-256 and BP-512.

Nibbles\
Bits 0 (Isb) 1 2 3
0 (first) P-256 P-384 P-521 BP-256

1 BP-384 BP-512 | Reserved Reserved

Figure 18. Curve support bitmask

5.3 Scanning a QR Code

A QR code is a two-dimensional matrix barcode that encodes arbitrary strings of data. If a DPP bootstrapping key is (a
component of) the data encoded, it is possible to obtain trust in such a key by scanning it as a QR code.

A public identity key is represented as an ASN.1 SubjectPublicKeyInfo structure encoded with the ASN.1 Distinguished
Encoding Rules (DER). The binary ASN.1 string is then base64 encoded to obtain a character string that may be easily
QR encoded. The length of the base64-encoded alphanumeric character string depends on the size of the public key.
Using the compressed SubjectPublicKeylnfo format specified in section 4.1, it is possible to obtain the lengths listed in
Table 10.

Table 10. Encoded Length of ECC Public Keys

Elliptic curve base64 SubjectPublicKeyInfo encoded length
P-256 80 characters

P-384 96 characters

P-521 120 characters

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 59 of 188

Wi-Fi Easy Connect™ Specification v3.0 @

Telianc”

A version 4 QR code is able to encode 114 alphanumeric characters with a low error-correction rate. Version 5 is able to
encode 154 alphanumeric characters and version 6 is able to encode 195 alphanumeric characters. Extra character
capacity, in addition to the public key, is taken up by an identifying tag to indicate to a scanner application that it is reading
a QR code for DPP and for freeform additional ancillary information that may optionally be displayed or otherwise made
use of.

The format of the data to QR encode a DPP bootstrapping information is given in section 5.2.1.

For example, a P-256 public key for a device that additionally indicates that it is operating on channel 1 and 36, can be
represented as the following character string:

DPP:C:81/1,115/36;K:MDKkwEwWYHK0Z1zj0OCAQY1K0Z1zjODAQcDIgADM2206avxHJaHXgLMkqg/24e0rsrfMPOK1Tm
8gx+ovPOI=;;

which is 103 characters and can be easily encoded as a version 4 QR code. The QR code generated from this
bootstrapping information is shown in Figure 19.

Figure 19. Example Bootstrapping QR Code for P-256 Public Key with Operating Channels

Large amounts of ancillary information, public keys from elliptic curves with a larger prime field, or non-compressed
SubjectPublicKey representations of a public key may require more QR code modules and therefore a higher version
number. Larger version QR codes are denser and require a larger physical representation to ensure easy and consistent
scanning. For example, a P-256 public key for a device that supports version 2.0 of this specification and includes a MAC
address of 01:02:03:04:05:06, and additionally indicates its serial number by "SN=4774LH2b4044", can be represented as
the following character string:

DPP:1:SN=4774LH2b4044;M:010203040506;
V:2;K:MDkwEwWYHK0Z1zj0CAQYIK0ZIzj0DAQcDIgADURzxmttZoIRIPWG0oQMVOOXHWCAQIhXruVWOzON;jIKIA=;

which is 126 characters and can easily be encoded as a version 5 QR code. The bootstrapping QR code generated from
this bootstrapping information is shown in Figure 20.

Figure 20. Example Bootstrapping QR Code for P-256 Public Key with MAC Address and Serial Number

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 60 of 188

Wi-Fi Easy Connect™ Specification v3.0

A manufacturer of devices that enable QR code bootstrapping shall take into account the physical area available to affix a
QR code as well as the size of public keys on the chosen elliptic curve and the amount of ancillary information to include
in the QR code.

A public key received by scanning a QR code shall be validated before being accepted.

5.4 NFC

541 Overview

NFC is a contactless technology designed for very short-range operation, approximately 10 cm or less. NFC is compliant
with today’s field proven contactless smart card technology.

NFC may be used to convey a variety of different data structures, some as simple transfers, and others as more complex
interactions referred to as NFC Protocols. The NFC Forum defines the Connection Handover protocol [23] to facilitate the
"handover" from an NFC exchange to some other connection.

The main aspects that make NFC different and complementary to wireless network technology are:

1. Short distance: NFC is designed for a distance of approximately 10 cm or less to ensure that the intentional action
of the user, bringing two NFC devices close to each other, is needed to trigger the communication.

2. Passive Communication via NFC Tags: NFC communications may occur between two NFC Devices that each are
able to actively "write" (send) NFC data to, and "read" (receive) NFC data from, another NFC Device. Additionally,
an NFC Tag is a type of unpowered passive NFC entity that is able to "write" (send) data once it is powered up by
the induction provided by an active Peer, which allows communication between a powered device and an
unpowered device (one without a battery) such as a contactless smart card or a sticker.

NFC requires at least one of the NFC enabled entities to be portable.
5.4.2 NFC Connection Handover

NFC Connection Handover is an NFC protocol that enables NFC to convey connection information for devices and their
services that have a presence on other non-NFC transports such as Wi-Fi, Bluetooth, and IP infrastructure. The NFC
physical proximity interaction model helps to facilitate these other connections with a reduced need for additional user
interaction.

NFC Connection Handover supports two interaction models: Static Handover and Negotiated Handover. In a Static
Handover, an NFC Device reads an NFC Tag to acquire the parameters to connect to another (possibly non-NFC aware)
device via the transports that the NFC Tag describes. In this interaction model, the NFC Tag assumes the role of
"Handover Selector". In a Negotiated Handover, two NFC Devices negotiate who will be the "Handover Requester"”, and
then one assumes that role and the other takes the role of "Handover Selector".

5421 DPP Bootstrapping via Negotiated Handover

DPP Negotiated Handover Bootstrapping uses the NFC Negotiated Handover to allow two NFC Devices to directly
exchange bootstrapping information. If one of the devices has the intention to activate communications via a non-NFC
communication technology, it may use the NFC Forum Connection Handover protocol [23] to announce possible
communication means, potentially including configuration data, and request the other device to respond with a selection of
matching technologies, possibly including necessary configuration data.

The negotiation portion of Negotiated Handover involves the two NFC Devices negotiating who will be the Handover
Requester and who will be the Handover Selector.

To use Negotiated Handover for DPP bootstrapping, both of the devices transmit their DPP Bootstrapping Information as
a URI, as described in section 5.2, in NFC Handover Request and NFC Handover Select Messages. The devices shall
perform mutual DPP Authentication when Negotiated Handover is used.

Table 11 shows an example of an NFC Handover Request Message where the only available carrier is a DPP
bootstrapping carrier. In practice, there may be multiple choices depending on the device's capabilities. Also, the carrier

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 61 of 188

Wi-Fi Easy Connect™ Specification v3.0

Telianc”

power state may have one of the other values defined in the Connection Handover specification if the Wi-Fi radio is not

yet active at the time of sending.

Table 11. NFC Handover Request Message

Length Value

Handover Request Record

1 0x91
1 0x02
1 Ox11
2 0x48 0x72
1 0x14

Collision Resolution Record

1 0x91
1 0x02
1 0x02
2 0x63 0x72
2 0x?? 0x??

Alternative Carrier Record

1 0x51
1 0x02
1 0x04
2 0x61 0x63
1 0x01
1 0x01
1 0x31
1 0x00

Wi-Fi DPP Bootstrapping Carrier Configuration Record

1 Ox5A

1 0x17

1 Ox7A

1 0x01

23 0x61 0x70 0x70 Ox6c 0x69 0x63 0x61 0x74 0x69 Ox6f Ox6e
0x2f 0x76 Ox6e 0x64 0x2e 0x77 0x66 0x61 Ox2e 0x64 0x70
0x70

1 0x31

1 0x00

102 0x44 0x50 0x50 Ox3a 0x43 0x3a 0x38 0x31 0x2f 0x31 0x2c

0x31 0x31 0x35 0x2f 0x33 0x36 0x3b 0x4b 0x3a 0x4d 0x44
0x6b 0x77 0x45 0x77 0x59 0x48 0x4b Ox6f Ox5a 0x49 0x7a
0x6a 0x30 0x43 0x41 0x51 0x59 0x49 0x4b 0x6f Ox5a 0x49
0x7a 0x6a 0x30 0x44 0x41 0x51 0x63 0x44 0x49 0x67 0x41
0x44 0x4d 0x32 0x32 0x30 0x36 0x61 0x76 0x78 0x48 Ox4a

Description

Record Header: MB=1, ME=0, CF=0, SR=1, IL=0, TNF=WKT
Type Length : 2

Payload Length: 17

Type: "Hr"

Version: 1.4

Record Header: MB=1, ME=0, CF=0, SR=1, IL=0, TNF=WKT
Type Length: 2

Payload Length: 2

Type: "cr"

16-bit random number

Record Header: MB=0, ME=1, CF=0, SR=1, IL=0, TNF=WKT
Type Length: 2

Payload Length: 4

Type: "ac"

AC Header: Carrier Power State (Active)

Carrier Data Reference Length: 1

Carrier Data Reference Value: "1"

Auxiliary Data Reference Count: 0

Record Header: MB=0, ME=1, CF=0, SR=1, IL=1, TNF=MIME
Type Length: 23

Payload Length: 103

ID Length: 1

Type: "application/vnd.wfa.dpp"

ID: "1"
URI Identifier Code: 0 (None - the "DPP" scheme isn't registered)

Bootstrapping URI as described in Figure 19

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 62 of 188

Wi-Fi Easy Connect™ Specification v3.0

Length

Value

0x61 0x48 0x58 0x67 Ox4c 0x4d Ox6b 0x71 0x2f 0x32 0x34
0x65 0x30 0x72 0x73 0x72 0x66 0x4d 0x50 0x39 0x4b 0x31
0x54 0x6d 0x38 0x67 0x78 0x2b 0x6f 0x76 0x50 0x30 0x49
0x3d 0x3b 0x3b

Telianc”

Description

Table 12 shows an NFC Handover Select Message sent in response to the NFC Handover Request Message from Table
11, where the only available alternative carrier is DPP bootstrapping. In practice, there may be multiple alternative carrier
choices from which to choose, and the Carrier Power State may have one of the other values defined in the Connection
Handover specification if the Wi-Fi radio is not yet active at the time of sending. Once the NFC Handover Select Message
has been received, the devices have what they need to perform mutual DPP Authentication.

Length

Table 12. NFC Handover Select Message

Value

Handover Select Record

1

0x91

0x02

O0x0A

0x48 0x73

0x14

Alternative Carrier Record

1

1

0xD1

0x02

0x04

0x61 0x63

0x01

0x01

0x41

0x00

Wi-Fi DPP Bootstrapping Carrier Configuration Record

1

1

23

126

Ox5A
0x17
Ox7A
0x01

0x61 0x70 0x70 Ox6c 0x69 0x63 0x61 0x74 0x69 Ox6f Ox6e
Ox2f 0x76 Ox6e 0x64 0x2e 0x77 0x66 0x61 Ox2e 0x64 0x70
0x70

0x41
0x00

0x44 0x50 0x50 0x3a 0x49 0x3a 0x53 0x4e 0x3d 0x34 0x37
0x37 0x34 0x4c 0x48 0x32 0x62 0x34 0x30 0x34 0x34 0x3b
0x4d 0x3a 0x30 0x31 0x30 0x32 0x30 0x33 0x30 0x34 0x30
0x35 0x30 0x36 0x3b 0x20 0x56 0x3a 0x32 0x3b 0x4b 0x3a
0x4d 0x44 0x6b 0x77 0x45 0x77 0x59 0x48 0x4b 0x6f Ox5a

Description

Record Header: MB=1, ME=0, CF=0, SR=1, IL=0, TNF=WKT
Type Length: 2

Payload Length: 10

Type: "Hs"

Version: 1.4

Record Header: MB=1, ME=1, CF=0, SR=1, IL=0, TNF=WKT
Type Length: 2

Payload Length: 4

Type: "ac”

AC Header: Carrier Power State (Active)

Carrier Data Reference Length: 1

Carrier Data Reference Value: "A"

Auxiliary Data Reference Count: 0

Record Header: MB=0, ME=1, CF=0, SR=1, IL=1, TNF=MIME
Type Length: 23

Payload Length: 127

ID Length: 1

Type: "application/vnd.wfa.dpp"

ID: "A"
URI Identifier Code: 0 (None - the "DPP" scheme isn't registered)

Bootstrapping URI as described in Figure 20

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 63 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Length Value Description

0x49 0x7a 0x6a 0x30 0x43 0x41 0x51 0x59 0x49 0x4b Ox6f
Ox5a 0x49 Ox7a 0x6a 0x30 0x44 0x41 0x51 0x63 0x44 0x49
0x67 0x41 0x44 0x55 0x52 0x7a 0x78 0x6d 0x74 0x74 0x5a
0x6f 0x49 0x52 0x49 0x50 0x57 0x47 0x6f 0x51 0x4d 0x56
0x30 0x30 0x58 0x48 0x57 0x43 0x41 0x51 0x49 0x68 0x58
0x72 0x75 0x56 0x57 Ox4f 0x7a 0x30 0x4e 0x6a 0x6¢c 0x6b
0x49 0x41 0x3d 0x3b 0x3b

In cases where the Handover Selector supports at least one of the channels in the Handover Requester's Bootstrapping
URI and it supports the bootstrapping key's curve, the Handover Selector should select and include only one of those
channels in the DPP Bootstrapping URI it provides in the NFC Handover Select Message it sends to the Handover
Requester.

In cases where the Handover Selector does not support any of the channels in the Handover Requester's Bootstrapping
URI or does not support the bootstrapping key's curve, the Handover Selector shall not include the DPP Bootstrapping
Carrier Configuration Record in the NFC Handover Select Message.

In cases where the Handover Requester receives an NFC Handover Select Message with an Alternative Carrier Record
list, it shall continue with the DPP Authentication protocol as a DPP Initiator.

In cases where the Handover Selector has sent an NFC Handover Select Message with an empty Alternative Carrier
Record list, it may abort the procedure, or it may become NFC Handover Requester itself and send an NFC Handover
Request Message with preferably all Wi-Fi channels it supports in its DPP Bootstrapping URI and in case of curve
mismatch, using the curve with the least number of bits that it supports and is willing to use in this particular protocol run
instance. If this second handover exchange is successful, the new Handover Requester shall continue with the DPP
Authentication protocol as a DPP Initiator.

NOTE: The original Handover Requester may want to give priority to only one or a very few channels it supports and only
list these in its bootstrapping URI. For example, a device may not want to leave a certain channel, so it wants to try and
perform DPP Bootstrapping on that channel first; however, it may be willing to go to another channel in case it turns out
that the peer does not support the channel proposed by the original Handover Requester.

5.4.2.2 DPP Bootstrapping via Static Handover

DPP Static Handover Bootstrapping uses the NFC Static Handover. When the DPP Initiator is an NFC Device and the
DPP Responder has or is represented by an NFC Tag, the NFC Tag contains the DPP bootstrapping information for the
Responder. Touching the NFC Device to the NFC Tag, the DPP Initiator reads the DPP bootstrapping information for the
DPP Responder.

Due to the unidirectional nature of the data transfer from an NFC Tag to an NFC Device in Connection Handover Static
Handover, DPP does not support the scenario where the DPP Initiator is represented by an NFC Tag and the DPP
Responder is an NFC Device.

The NFC Handover Select Message described in Table 12 accurately describes an NFC Handover Select Message for
either Static Handover or Negotiated Handover scenarios.

5.4.3 DPP Bootstrapping via NFC URI Record

If the additional infrastructure provided by the NFC Connection Handover is not necessary, DPP bootstrapping may be
conveyed in an NFC Forum standard URI NDEF Message containing a single URI record. Table 13 describes the
structure of that message.

Table 13. DPP Bootstrapping URI Message

Length Value Description
Wi-Fi DPP Bootstrapping Carrier Configuration Record
1 0xD1 Record Header: MB=1, ME=1, CF=0, SR=1, IL=0, TNF=WKT
1 0x01 Type Length: 1
© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 64 of 188

- ™ I -
Wi-Fi Easy Connect™ Specification v3.0
Length Value Description
1 Ox7A Payload Length: 127
1 0x55 Type: U
1 0x00 URI Identifier Code: 0 (None - the "DPP" scheme isn't registered)
126 0x44 0x50 0x50 Ox3a 0x49 0x3a 0x53 Ox4e 0x3d 0x34 0x37 | Bootstrapping URI as described in Figure 20.

0x37 0x34 0x4c 0x48 0x32 0x62 0x34 0x30 0x34 0x34 0x3b
0x4d 0x3a 0x30 0x31 0x30 0x32 0x30 0x33 0x30 0x34 0x30
0x35 0x30 0x36 0x3b 0x20 0x56 0x3a 0x32 0x3b 0x4b 0x3a
0x4d 0x44 0x6b 0x77 0x45 0x77 0x59 0x48 0x4b 0x6f Ox5a
0x49 0x7a 0x6a 0x30 0x43 0x41 0x51 0x59 0x49 0x4b Ox6f
Ox5a 0x49 Ox7a 0x6a 0x30 0x44 0x41 0x51 0x63 0x44 0x49
0x67 0x41 0x44 0x55 0x52 0x7a 0x78 0x6d 0x74 0x74 0x5a
0x6f 0x49 0x52 0x49 0x50 0x57 0x47 0x6f 0x51 0x4d 0x56
0x30 0x30 0x58 0x48 0x57 0x43 0x41 0x51 0x49 0x68 0x58
0x72 0x75 0x56 0x57 Ox4f 0x7a 0x30 0x4e 0x6a 0x6¢c 0x6b
0x49 0x41 0x3d 0x3b 0x3b

5.5 Bluetooth

NOTE: This feature has not been tested in the Device Provisioning Protocol (DPP) Certification Program.
5.5.1 Overview

Bluetooth Low Energy (BLE) provides the ability to advertise or scan for discovery of Peer device information within a
shorter communication range than Wi-Fi. Prior to Bluetooth 5.0, the advertising/scanning payload was limited to 29 bytes.
Bluetooth 5.0 [35] allows an advertising/scanning payload of up to 255 bytes.

A Responder may advertise DPP bootstrapping information using BLE. An Initiator may discover and obtain DPP
bootstrapping information using BLE. The Responder enters bootstrapping mode and begins to advertise the DPP
bootstrapping URI on an auxiliary channel. Figure 21 gives an example message flow that describes the interaction
between the Initiator and the Responder for BLE Bootstrapping when the Configurator is acting as the Initiator.

The Enrollee enters bootstrapping mode and advertises the secondary channel information associated with the
bootstrapping information advertisements. These advertisements are periodically transmitted on primary BLE channels
using ADV_EXT_IND packets. The advertisements on the primary channels include secondary channel information with
respect to the next transmission on the secondary channel. The Enrollee also advertises the DPP bootstrapping
information on the secondary channel using ADV_AUX_IND packets. The Enrollee alternates transmissions on the
primary and secondary channels as shown in Figure 21. In addition, the Enrollee sends AUX_ADV_RSP which includes
the Enrollee’s bootstrapping information as shown in Figure 22, if the Enrollee receives AUX_ADV_REQ from the
Configurator.

The Configurator enters bootstrapping mode and listens on the primary BLE channels until it discovers neighboring
Enrollee’s advertisement. The Enrollees around the Configurator sends ADV_EXT_IND to advertise that they support the
bootstrapping over BLE. The Configurator obtains the secondary channel information and then listens for the
advertisement on the secondary channel, which includes the DPP Bootstrapping Information. The Configurator should
display the list of the discovered Enrollees. If the user selects one of the Enrollees as the target, the Configurator does the
following.

¢ If the Configurator has received an AUX_ADV_IND packet from the Enrollee, the BLE bootstrapping is completed
¢ If the Initiator does not receive any AUX_ADV_IND from the Enrollee, the Initiator sends an AUX_SCAN_REQ
packet to obtain the bootstrapping information from the Enrollee as shown in Figure 22

When the Configurator receives AUX_SCAN_RSP including the bootstrapping information, the BLE bootstrapping is
completed.

Once the bootstrapping is completed, the DPP Authentication and Configuration over Wi-Fi process follow.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 65 of 188

Wi-Fi Easy Connect™ Specification v3.0

e

The exchange of the bootstrapping information from the Enrollee to the Configurator shall be performed at close proximity.
For this purpose, the transmission power level for DPP bootstrapping shall be lowered.

Configurator Bluetooth Low Energy Bootstrapping Enrollee
WI-FifIF Wi-FifIF
BLEAF BLE/IF |

BLE-Bootstrapping
Enralles]

BLE-Bootstrapping
Cenfigurator]

Enrcllee enters
Bootstrapping
maode and begins
o transmit BLE
Beacons an 3
Primary channels
and Secondary
channel

Configurater
begins listening
an primary
channel to receive
BLE Beacon with
Secondary
channel info.

BLE Advertisement [ADV_EXT_IND, Channel Infa) Reéponder

BLE Advertisement [ADV_EXT_IND, Channel Infa)

BLE Advertisement [ADV_EXT_IND, Channel Info)

BLE Advertisement (AUX_ADV_IND, URI,

Responder's WLAN-

JPublic key, MAC address of

Bootstrapping is
completed

Initiator

DPP Authentication

OPP Connect

(DPP Configuration

Figure 21. Example Bootstrapping Message Sequence Using BLE Passive Scan

Configurator Bluetooth Low Energy Bootstrapping Enrollee
BLE/IF BLE/fIF

BLE-Bootstrapping
Enrollee]

BLE-Bootstrapping
Configurator]

ADV_EXT_ING (Channel Infa)

AUX_ADV_IND{URI, o, .. (PuBlic key, MAC address of Responder's WLAN-NIC,..])

2 <

ALX_SCAN_REQ

BLE

AUX_SCAN_RSPYURI,...,{Public key, MAC address of Responder’s WLAN-NIC,...))

Bootstrapping is
completed

Initiator

DPP Authentication

DPP Connect

(DPP Configuration

Figure 22. Example Bootstrapping Message Sequence using BLE Active Scan

If mutual authentication is required for bootstrapping, the Initiator and Responder exchange each other’s bootstrapping
information.

5.5.2 Responder Procedures

The Responder is triggered to enter bootstrapping mode. The trigger conditions for bootstrapping mode are beyond the
scope of this specification. The Responder configures the BLE advertisement on the primary channel according to [35],
with advertising information shown in Table 14.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 66 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Table 14. Primary Channel Advertisement Parameters

Parameter Value
Advertisement Type ADV_EXT_IND
Mode Non-Connectable and Non-Scannable Undirected with auxiliary packet
ADI Setto 0
AuxPtr Contains the Secondary Channel information
TxPower The TxPower as specified in [35]
Payload:
uuID OXFCCC - Wi-Fi Alliance 16bit UUID for Bluetooth
Type 0x01 - DPP bootstrapping
Length 0
Data 0

The Responder shall advertise the Bootstrapping URL on a secondary channel indicated in the primary channel
advertisement. As shown in Figure 21, the bootstrapping URL shall include the MAC address of the Responder’s Wi-Fi
interface for the Responder and Initiator complete DPP Authentication. The secondary advertisement information is given
in Table 15.

Table 15. Secondary Channel Advertisement Parameters

Parameter Value
Advertisement type ADV_AUX_IND
ADI Setto 0
TxPower The TxPower as specified in [35]
Payload:
uuID OXFCCC - Wi-Fi Alliance 16bit UUID for Bluetooth
Type 0x02 (DPP URI)
Length URI length
URI Data URI encoded as per [36]

The Responder shall advertise the Bootstrapping information for 10 seconds, alternating advertisements on the primary
and secondary channels. The period between advertisement transmissions is implementation specific.

5.5.3 Initiator Procedures

The Initiator is triggered to enter BLE bootstrapping mode. The trigger conditions are implementation dependent. Once
triggered, the Initiator begins listening on primary channels for a Responder advertisement.

The Initiator searches for extended advertisements on the primary channel that contain the DPP UUID in their payload.
Receiving an extended advertisement on the secondary channel from the Responder, the Initiator parses the
bootstrapping information. If the Initiator obtains the bootstrapping information, it enables its own Wi-Fi interface if
necessary. Then, it takes a role as an Initiator which is ready to initiate DPP Authentication based on the bootstrapping
information.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 67 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

554 BLE GATT Based DPP Bootstrapping

BLE devices support an ADV_IND advertisement packet. ADV_EXT_IND and AUX_ADV_IND advertisement packets are
defined in the BT 5.0 core specification as an optional feature. Because an ADV_IND packet has a shorter payload length
(29 bytes) then the combination of an ADV_EXT_IND and an AUX_ADV_IND's payload length (255 bytes), ADV_IND can
use a GATT server to provide more information.

Figure 21 shows the relationships between a BLE Seeker and a BLE Provider. The BLE Provider behaves as a GATT
Server for the Transport Discovery Service (TDService) [43] and the BLE Seeker acts as a GATT Client. The example
below depicts a DPP Responder as a BLE Provider with a DPP Initiator assuming the BLE Seeker role.

Initiator Responder
BLE Seeker(GATT Client) BLE Provider(GATT Server)
TDService

Characteristics

UUID: 53FB1B55...
[Provider DPP Bootstrap URI |

A
h 4

UUID: 94A40096...
| seeker DPPBootstrapURI |

Figure 23.BLE Seeker and BLE Provider Service Communication

Figure 22 shows a DPP Bootstrapping Message sequence using the TDService and a BLE GATT. The BLE Provider shall
present a Transport Discovery Data AD Type in its ADV_IND packet in order to advertise its service. The BLE Provider
shall further provide the GATT server that the BLE seeker uses to discover and retrieve information after making a BLE
connection. The BLE Provider shall store its DPP bootstrapping URI in the GATT Server. The BLE Provider advertises an
ADV_IND packet that includes a TDS Data AD with an Org.ID field value equal to the (0x03) Wi-Fi Alliance Service
Advertisement value.

If the BLE Seeker receives the ADV_IND packet that contains the Wi-Fi Alliance Service Advertisement value (0x03) in
Org.ID field and the DPP value in the Wi-Fi Alliance header field in the Org.Data, it tries to make a BLE connection with
the BLE Provider. After establishing a BLE connection, the BLE Seeker initiates Service Discovery to obtain the BLE
Provider's various UUIDs. The BLE seeker then sends a BLE ATT Read Request containing the Provider's with the DPP
bootstrap URI UUID. If the BLE Provider receives an ATT Read Request containing the DPP bootstrap URI UUID, it
responds with the DPP bootstrapping URI's value using a BLE ATT Read Response packet. Finally, the BLE Seeker
obtains the Provider's DPP bootstrapping URI through BLE bootstrapping. Optionally, if the BLE Seeker supports DPP
mutual authentication, it can write the its DPP bootstrapping URI to the GATT server using a BLE ATT Write Request
packet. After finishing BLE bootstrapping, the BLE Seeker and Provider may close the BLE connection, and then the
Initiator can start the DPP protocol.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 68 of 188

Wi-Fi Easy Connect™ Specification v3.0

Configurator Enrollee
Initiator) (Responder)
. BLE BLE -
Wi-Fi Seeker Provider Wi-Fi
1]) 1T
ADV_IND(TDS(Org.ID(WFA Service Advertisement),
P Org.Data(WFA_HDR(DPP))))
P Make BLE Connection =
- e
] Service Discovery EATT
GATT » d
Clieht Frver
ATTRead Request(UUID: 0x53FB..)
DPP) i
BootstrapURI < ATT Read Response({Provider DPP Bootstrap URI)
ATTWrite Request (UUID: 0x94A4.., Seeker DPP Bootstrap URI) DPP R
> B apl
ATT Write Response >
Close BLE Connection
Start DPP Protocol
< »

Telianc”

Figure 24. Example of BLE DPP Bootstrapping Message Sequence using TDS and BLE GATT

554.1

BLE Advertising Payload

Figure 25 shows a Transport Data AD Type format [43] for DPP advertisement. The Transport Data AD Type format can
be used to advertise a Wi-Fi Alliance service.

Org.Data (0~26 bytes)

Y

Figure 25. Transport Data AD Type Format for DPP Advertisement

AD length Transport Discovery Data Org.ID TDS Flag Length Wi—Fi Service Specific Advertisement
(1 byte) AD Type Codellbyte) (1 byte) (1 byte) {1 byte] | Alliance Information
Header (0~25 bytes)
(1 byte)
Value Definition Bits Definition Value Definition
000 FFU 0-1 Fole <00 RFU
0301 Bluetooth SIG 2 Transport Data 0x01 DPP
.) Incomplete — -
0x02 Wi-Fi Allilance 1:True 0x02 — 0xFF Wi-Fi Alliance
Generic Service Discovery assigned number for
(used by NAN) 3-4 Transport State WFEA program usage
0x03 Wi-Fi Alliance 57 Reserved
Service Advertisement
0x04 — OxFF BT SIG assigned number for WEA
program usage

The Organization ID field contains an appropriate organization value according to the Bluetooth SIG Assigned Numbers
[44]. The Wi-Fi Alliance Service Advertisement (value = 0x03) shall be used for DPP bootstrapping.

The Transport Data Incomplete bit in a TDS Flag field indicates whether the Org.Data field contains complete or

incomplete data. If there is insufficient space in the Org.Data field for the Service Specific Advertisement Information, the
Transport Data Incomplete bit shall set to true (value = 1). An incomplete Org.Data field implies that the Service Specific
Advertisement Information data can be found in the GATT server.

The Organization data (Org.Data) field for the Wi-Fi Alliance Service Advertisement consists of a 1-byte Wi-Fi Alliance
Header field and a 25-byte Service Specific Advertisement Information field. The Wi-Fi Alliance Header field specifies a
Wi Fi Alliance service (e.g. DPP). The length of the Service Specific Advertisement Information field can be 0-25 bytes
depending upon whether there is service specific information or not. Optionally, a version of DPP might be presented in

the service specific advertisement information field.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 69 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Table 16 shows the advertisement parameter in an ADV_IND payload for DPP bootstrapping.
Table 16. Advertisement Parameter in ADV_IND Payload

Parameter Value

Advertisement Type ADV_IND

Payload:

AD length TDS frame length

Transport Discovery Data AD Type Code 0x26 (Specified in [40])

Org.ID 0x03 (Wi-Fi Alliance Service Advertisement)
TDS Flag Transport Data Incomplete bit set to 1
Length Org.Data length

Org.Data :

Wi-Fi Alliance Header 0x01(DPP)

Service Specific Advertisement Optional

5.5.4.2 Characteristic Type and UUID Generation Rule

The Characteristic Type for DPP is case-sensitive and consists of a service name and a characteristic name. The service
name is expressed in lower case characters. Characteristic name is expressed in camel cases format and begins with a
lower case character. The Characteristic Type is used to generate a UUID. DPP shall use the following format to generate
its Characteristic type.

Characteristic Type = <service name>'.'<characteristic name>
For example : dpp.providerBootstrapURI

To generate a UUID of the Characteristic Type, the BLE provider produces a SHA-256 hash of the Characteristic Type
then selects the first 16-bytes from that the resultant hash.

UUID = select first 16-bytes of SHA-256(Characteristic Type)

Table 17 shows an example of DPP characteristics. The BLE provider shall provide the dpp.providerBootstrapURI and the
dpp.seekerBootstrapURI, but any other Characteristic Types are optional. The BLE seeker may write its public
bootstrapping URI into the dpp.seekerBootstrapURI characteristic to perform DPP mutual authentication.

Table 17. Example of Characteristics for DPP

Characteristic Type UuID Permission Requirement
dpp.providerBootstrapURI 53FB1B55-1BDD-EA98-BED0O-BB45E658E9C9 Read M
dpp.seekerBootstrapURI 94A40096-AED2-2034-4EDC-658303223245 Write M

5.6 PKEX: Proof of Knowledge of a Shared Code, Key, Phrase, or Word

Yet another technique is to mask bootstrapping information with a shared code, key, phrase or word (hereinafter, “code”)
and rely on knowledge of the shared code to unmask the bootstrapping key. If a Peer is able to prove it knows and can
use the shared code, the Peer’s bootstrapping key can be trusted. Additionally, optional bootstrapping information that is
associated with the exchanged key may be sent in this protocol and is hidden from attackers. The only information leaked

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 70 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

to an attacker by an active attack is whether a single guess of the code is correct or not. The larger the pool from which
the code was drawn, the lower the probability that that guess will be correct. The trust placed in the public key received in
this protocol is inversely proportional to the probability of an attacker guessing the code outright.

If both sides have a user interface, this technique can be used to bootstrap trust by exchanging bootstrapping information
including the bootstrapping keys that are to be used for a DPP exchange requiring mutual authentication. This
bootstrapping technique shall use a fresh code each time and the same code shall not be used with different Peers.

The PKEX protocol [22] is used to establish trust in a Peer’s bootstrapping key, and correspondingly allow the Peer to
establish trust in the device’s bootstrapping key using a shared code. Optionally, a non-secret identifier for the code can
be transmitted to support the case where a PKEX implementation may be provisioned to connect to a plurality of devices
and needs to know which code to use to process a received PKEX frame. If an optional code identifier is used, it shall be
a UTF-8 string not greater than eighty (80) octets that is provisioned at the same time as the shared code.

PKEXv1 has no version indication, whereas PKEXv2 uses a version indication based on Table 31 in section 8.1.1.18.
NOTE: PKEXv2 has not been tested in the WI-FI EASY CONNECT R2 Certification Program.

DPP R2 devices are expected to use PKEXv1 by default. It should be noted that PKEXv1 cannot be used in the DPP-
over-TCP case. Implementations may allow the user to specify PKEXv2 to be used when operating with other DPP R2
devices.

5.6.1 PKEX Preliminaries

The PKEX protocol requires a public key and an identifier for the finite cyclic group to which the public key belongs. The
subjectPublicKey from the device’s bootstrapping key is used as the public key and the particular elliptic curve identified
by the Algorithmidentifier parameters in the device’s bootstrapping key is converted to a finite cyclic group using the
registry maintained by IANA as “Group Description” attributes for IETF RFC 2409 [38], [39]. PKEX uses compact output,
per RFC 6090 [4], by denoting certain ECDH secret output with the x-coordinate only, per the notation from section 3.3.1.
PKEX does not use RFC 6090 compact representation, all transmitted public keys are sent using both the x- and y-
coordinates per section 3.3.1.

Due to the nature of the PKEX exchange, the public keys exchanged by each device shall be from the same finite cyclic
group.

When the Initiator is not running PKEX over TCP, it needs to discover the Responder over the wireless medium. In lieu of
specific channel information obtained in a manner outside the scope of this specification, PKEX responders shall select
one of the following channels:

e 2.4 GHz: Channel 6 (2.437 GHz)

e 5 GHz: Channel 44 (5.220 GHz) if local regulations permit operation only in the 5.150 — 5.250 GHz band and
Channel 149 (5.745 GHz) otherwise

e 60 GHz: Channel 2 (60.48 GHz)

e Sub-1 GHz: Channel 37 (920.5 MHz) if local regulations permit use of global operating class 68 (ITU Region 2,
Australia, New Zealand, Singapore) otherwise Channel 1 (863.5 MH2z) if local regulations permit use of global
operating class 66 (Europe)

The Initiator shall iterate through the list of channels on the supported bands. If the Initiator of PKEX has learned the MAC
address of the Responder in a manner outside the scope of this specification, it shall send its PKEX Exchange request to
that MAC address, otherwise, it shall send its PKEX Exchange Request to the broadcast MAC address.

When PKEX is being run over TCP, the Initiator needs to discover the Responder in a manner outside the scope of this
specification.

When PKEX version 1 is performed, the MAC addresses of the Initiator and Responder are included in secret generation.
When the PKEX version is 2 or greater is performed, the MAC addresses are not used. PKEX version 1 shall use a
unique frame type for the initial exchange to identify when that protocol is being used. All other versions of PKEX shall use
a different frame type (see Table 35 in section 8.2.1.1).

NOTE: A potential interoperability issue exists with a PKEX version 1 device communicating with a version 2 DPP Relay
and Controller (see section 2.3). The version 1 device will not know its peer is speaking PKEX over TCP and will not have
MAC addresses to include in secret generation. Because of this, a DPP Controller should refuse a version 1 PKEX

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 71 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

connection unless the MAC address information can be provisioned out-of-band in a manner outside the scope of this
specification.

NOTE: PKEX implementations may be provisioned with multiple codes. When this is the case, an identifier is required to
allow the responder to identify the particular code.

The protocol consists of two phases: an exchange phase and a commitment-reveal phase. In the exchange phase, the
Peers exchange ephemeral keys encrypted with the code. In the commit-reveal phase, the Peers cryptographically bind
their bootstrapping private key to exchange and reveal their public key.

The protocol requires fixed elements in the group from which the public keys were derived. These fixed elements are role-
specific: one for the Initiator and one for the Responder; and need not be secret. Elements for supported groups to use
with PKEX are listed in Appendix C. The generator, G, used in PKEX is taken from the definition of the group’s domain
parameter set.

Descriptively, the bootstrapping key that the Initiator wishes to share with the Responder is A with a private analog of a,
and the bootstrapping key the Responder wishes to share with the Initiator is B with a private analog of b.

PKEX maintains a counter, t, of unsuccessful authentications for a given code. When a code and optionally a code
identifier is configured, the counter is set to zero. Each unsuccessful authentication increments the counter by one. When
the counter reaches five, the code, and the code identifier if provisioned, should be irretrievably deleted.

The code, and code identifier if provisioned, should be deleted upon successful completion of PKEX. Codes shall not be
reused.

The hash algorithm used with PKEX shall be based on the elliptic curve used and determined by Table 4 in section 3.3.
DPP Public Action frames from Section 8.2.1, Figure 32 are used to form PKEX messages.

Test vectors for an example run of PKEX using NIST p256 are given in Appendix D.
5.6.2 PKEX Exchange Phase

The Initiator selects a group from which it has obtained a public/private key pair it wishes to bootstrap with a Peer. Once
the group and keypair have been identified, the Initiator hashes its identity with the code, optionally including the code
identifier, and multiplies the result with the Initiator-element for the selected group, denoted Pi, to generate an encrypting
element, Q. If Qi is the point-at-infinity, the code shall be deleted and the user should be notified to provision a new code.
The Initiator then generates a random ephemeral keypair, x/X, in the same group, adds X to Qi, thereby encrypting it, and
sends the selected group, and optionally the code identifier, and the result, denoted M, to the Responder as a PKEX
Exchange Request or PKEX Version 1 Exchange Request, depending on the version supported:

Qi = H([MAC-Initiator |] [identifier |] code) * P;

X=x*G

M=X+ Qi

Initiator — Responder: [Protocol Version,] group, [identifier,]| M

Where [identifier |] is optionally included when a code identifier is used. If the Initiator indicates PKEX with a Protocol
Version of 1, MAC-Initiator shall be the MAC address of the Initiator and the Protocol Version shall not be present.
Otherwise, MAC-Initiator is not present and Protocol Version indicates the highest supported version of PKEX. If the
Initiator does not receive a response to its PKEX Exchange Request within 200 ms, it should retransmit the PKEX
Exchange Request a maximum of five times before attempting to change channels. If the PKEX Initiator has exhausted all
possible channels and has not received a response, it shall abandon PKEX. If the Initiator is attempting PKEX with a
version of 2 or higher and it does not receive a response, it shall restart the protocol by sending a PKEX Version 1
Exchange Request using the version 1 frame type. If the Initiator receives a PKEX Exchange Response indicating support
for version 1, it shall complete the PKEX Exchange as version 1.

The Responder receives the PKEX Exchange Request and checks whether the selected finite cyclic group is acceptable.
If it is not acceptable, the Responder generates a PKEX Exchange Response with the DPP Status set to
STATUS_BAD_GROUP and offers an acceptable alternative in the finite cyclic group field:

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 72 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

Responder — Initiator: DPP Status, [Protocol Version,] group
Where Protocol Version is the highest supported version of PKEX.

If the Protocol Version in the received PKEX Exchange Request indicates a higher version of PKEX than supported by the
Responder, the Responder shall treat this exchange as if it is for the highest supported version of the Responder.
Otherwise, the Responder obtains M and validates M per section 3.3.1. If M is not valid, the counter t is incremented and
the exchange silently fails. Otherwise, the Responder computes its own version of Qi in the indicated group and decrypts
M as follows:

Qi = H(MAC-Initiator | [identifier |] code) * P;
X =M-Qi

Where [MAC-Initiator] is the MAC address of the Initiator if the Protocol Version is not present in the Initiator's PKEX
Exchange Request. The resulting ephemeral key, denoted X', is checked whether it is the point-at-infinity. If it is not valid,
the protocol silently fails and the counter t is incremented. Otherwise, the Responder hashes its identity with the code, and
optionally the code identifier, and multiplies the result with the Responder-element, denoted P, to generate an encrypting
element, Qr. The Responder then generates a random ephemeral keypair, y/Y, encrypts Y with Qr to obtain the result,
denoted N. The responder then constructs a PKEX Exchange Response with a DPP Status, and optionally the code
identifier if the Initiator included it in the PKEX Exchange Request, and N.

If Qris the point-at-infinity the DPP Status is set to STATUS_BAD_CODE and the following PKEX Response is sent to the
Initiator:

Responder — Initiator: DPP Status, [Protocol Version,] [identifier]

Where Protocol Version shall indicate the highest supported version of PKEX. If the Responder set the DPP status to
STATUS_BAD_CODE, the code shall be irretrievably deleted and the protocol shall unsuccessfully fail. The user should
be notified to provision a new code.

If Qris not the point-at-infinity, the DPP Status is set to STATUS_OK and the PKEX Exchange Response is sent to the
Initiator:

Qr = H([MAC-Responder |] [identifier |] code) * Pr

Y=y*G

N=Y+Qr

Responder — Initiator: DPP Status, [Protocol Version,] [identifier,] N

If the Responder only supports PKEX version 1, MAC-Responder shall be the MAC address of the Responder and
Protocol Version shall not be present. Otherwise, MAC-Responder shall not be present and Protocol Version indicates the
highest supported version of PKEX. At this time, the Responder computes secret element K by multiplying the Initiator’s
ephemeral key X’ by the Responder’s ephemeral private key, and generates a shared secret, z, for AES-SIV whose
length is determined by Table 4:

K=y*X
z = HKDF(<>, info | M.x | N.x | code, K.x)

If the Initiator did not include a Protocol Version in its PKEX Exchange Request, the "info" shall be a concatenation of
MAC-Initiator and MAC-Responder. Otherwise, it shall be a concatenation of the Protocol Version sent by the Initiator and
the Protocol Version sent by the Responder. The Responder shall delete the secret element K upon generation of z.

The Initiator receives the PKEX Exchange Response and checks DPP Status field. If the field value is
STATUS_BAD_GROUP, the Initiator inspects the offered group. If the Responder's offered group offers less security
than the Initiator's offered group, then the Initiator should ignore this message and attempt its original PKEX Exchange
Request due to the unsecured nature of this response. If the Responder's offered group offers equivalent or better
security than the Initiator's offered group, then the Initiator may choose to abort its original request and try another
exchange using the group offered by the Responder. If DPP Status field value is STATUS_BAD_CODE, the Initiator
should verify that Qr gets computed to be the point-at-infinity and if so, it shall irretrievably delete the code and fail the
exchange. The user should be notified to provision a new code in this case. If Qr is not the point-at-infinity or if DPP status

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 73 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

is any value other than STATUS_OK, the Initiator ignores the message. Otherwise, DPP Status field value is
STATUS_OK and the group is acceptable. If the Initiator sent a Protocol Version number and the Responder did not, the
Initiator shall terminate PKEX, the user should be notified of this event. If the Responder indicated a Protocol Version that
differs from that indicated by the Initiator, the negotiated version for PKEX shall be the lower of the two.

Next, the Initiator obtains N, validates N per section 3.3.1. If N is not valid, the Initiator increments the counter t and
silently fails the exchange. Otherwise, it computes its own version of Qr and decrypts N.

Qr = H([MAC-Responder [] [identifier |] code) * Pr
Y =N - Qr

Where [identifier |] is only included when a code identifier is used and [MAC-Responder] is only included when PKEX
version 1 is being performed.

The resulting ephemeral key, denoted Y’, is then checked whether it is the point-at-infinity. If it is not valid, the protocol
ends unsuccessfully and the counter t is incremented. Otherwise, the Initiator multiplies the Responder’s ephemeral key,
Y’, by the Initiator's ephemeral private key to produce another secret element, K, and the shared secret key, z:

K=x*Y
z = HKDF(<>, info | M.x | N.x | code, K.x)

If PKEX version 1 is being performed, info shall be a concatenation of the Initiator's MAC address and the Responder's
MAC address. Otherwise, it shall be a concatenation of the Initiator's Protocol Version and the Responder's Protocol
Version.

The protocol advances to the next stage.

5.6.3 PKEX Commit-Reveal Phase

The Initiator then multiplies the Responder’s ephemeral key, Y’, by the Initiator’s private bootstrapping key, a, generates a
shared key, J, and signs a commitment consisting of its MAC address if doing PKEX version 1, its public bootstrapping
key, and the two ephemeral keys as follows:

J=a*Y

u=HMAC(J.x, [MAC-Initiator |[] Ax | Y'.x | X.x)
The Initiator encrypts and authenticates this commitment, its bootstrapping key, and any optional additional information in
the ABNF format from section 5.2.1, denoted “bootstrapping info”, for the Responder using AES-SIV. The AAD for this

operation shall consist of two components: (1) the DPP header, as defined in Table 34, from the OUI field (inclusive) to
the DPP Frame Type field (inclusive); and (2) a single octet of the value zero.

The Initiator sends the encrypted bootstrapping data to the Responder as a PKEX Commit-Reveal Request:
Initiator — Responder: {A, u, [bootstrapping info]}.
Upon receipt of this message, the Responder decrypts the Initiator’s bootstrapping data using secret z.

If decryption of the message fails, the protocol fails, the counter t is incremented, and an alert should be given to the user.
Otherwise, the decrypted bootstrapping key, A, is checked for validity. If the decrypted bootstrapping key is not valid, the
protocol fails. Otherwise, it continues and the Responder then computes the shared key and verifies the Initiator’s
commitment:

Jy - y * A)
U’ = HMAC(J' X, [MAC-Initiator [] A’x | Y.x | X'.x)

Where MAC-Initiator is included if PKEX version 1 is being performed. If u’ does not equal u, then the protocol fails and
the counter t is incremented. Otherwise, the Responder continues. At this point the Responder has authenticated the
Initiator and trusts the Initiator’'s bootstrapping key A.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 74 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

The Responder then multiplies the Initiator's ephemeral key X’ by the Responder’s private bootstrapping key, b, to
produce a shared key, L, and signs a commitment consisting of its MAC address if performing PKEX version 1, its public
bootstrapping key, and the two ephemeral keys:

L=b*X
v = HMAC(L.X, [MAC-Responder |] B.x | X'.x |[Y.x)

Next the Responder uses z, to encrypt its bootstrapping key, its confirmation, and any optional additional information in
the ABNF format from section 5.2.1, denoted “bootstrapping info”, for the Initiator with AES-SIV. The AAD for this
operation shall consist of two components: (1) the DPP header, as defined in Table 34, from the OUI field (inclusive) to
the DPP Frame Type field (inclusive); and (2) a single octet of the value one. The Responder sends the encrypted
bootstrapping data to the Initiator as a PKEX Commit-Reveal Response:

Responder — Initiator: {B, v, [bootstrapping info]}.

Upon receipt of this message, the Initiator decrypts the Responder’s bootstrapping information. If decryption fails, the
protocol fails, the counter t is incremented, and an alert should be given to the user. Otherwise, the decrypted
bootstrapping key, B’, is checked for validity. If the decrypted bootstrapping key is not valid, the protocol fails. Otherwise, it
continues and the Initiator computes the shared key and verifies the Responder’'s commitment:

L'=x*B’
V' = HMAC(L.X, [MAC-Responder || B'.x | X.x | Y'.x)

Where MAC-Responder is included if PKEX version 1 is being performed. If v’ does not equal v, then the protocol fails
and the counter t is incremented. Otherwise, it succeeds and the Initiator trusts the Responder’s bootstrapping key B.

Upon successful completion of the PKEX protocol, the device has the Peer’s trusted public key, and the Peer has the
device’s trusted public key. The code, and code identifier if provisioned, should be deleted at this point. The Peer’s trusted
public key, and the finite cyclic group to which it belongs, is used to construct a SubjectPublicKeyInfo representation of the
Peer’s bootstrapping key per section 4.1: the Algorithmldentifier algorithm is the object ecPublicKey, the finite cyclic group
is converted back to the Algorithmldentifier parameters defining the elliptic curve, and the public key is compressed to
become the subjectPublicKey.

The device that initiated the PKEX protocol shall initiate the DPP Authentication protocol immediately after successful
completion of the PKEX protocol. When PKEX is not performed over TCP, the same MAC addresses and the same
channel shall be used for both PKEX and DPP Authentication. When PKEX is performed over TCP, the same TCP
socket used for PKEX shall be used for DPP Authentication.

5.7 Bootstrapping Using a Trusted Third Party
57.1.1 Overview

Bootstrapping methods provide the Responder’s bootstrapping key to the Initiator and optionally the Initiator's
bootstrapping key to the Responder. When this process involves a third-party which is neither the DPP Initiator nor the
DPP Responder, for example obtaining bootstrapping keys from a cloud service, additional requirements are placed on
those bootstrapping methods.

For the purposes of discussion, the third-party providing bootstrapping keys will be called the Service, and the Participant
queries the Service for the bootstrapping keys of an Entity. For completeness, the concepts of Participant and Entity can
be loosely tied to an Initiator and Responder; however, the specification purposely uses Participant and Entity to maintain
maximal flexibility in how they could actually be implemented in practice.

How a Service obtains the bootstrapping key of an Entity in the first place is out of scope, but it shall not violate any of the
assumptions made below for the Service to provide necessary assurances to the Participant.

5.7.1.2 Requirements

The Participant shall obtain an assurance that the Service is an authoritative source for the Entity’s bootstrapping key and
that the Service is authorized to provide the bootstrapping key. The DPP Authentication protocol assumes that the

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 75 of 188

Wi-Fi Easy Connect™ Specification v3.0

Telianc”

bootstrapping key received by the Participant is trusted to belong to the Entity. This trust is commensurate with the level of
authoritative and authorized trust of the Service to provide the Entity’s bootstrapping key. For example, this could be
accomplished with a certificate issued to the Service by a trusted authoritative source for the Entity, such as a
manufacturer. The method by which a Participant discovers an Entity's bootstrapping Service is out of scope for DPP;
however, examples of possible solutions could include a user entering a Service's well-known URL into the Participant's
user interface or a Participant pre-programmed to query a well-known DNS address to resolve the Service's IP address.
The Service shall obtain an assurance that the Participant is the legitimate owner of the Entity and the query is legitimate.
For Entities using the Resurrecting Duckling model of security, there is an assumption that the Entity’s bootstrapping key
will only be known by a valid peer. Therefore, the Service shall only distribute an Entity’s public key to a Participant that
can demonstrate it is the Entity’s legitimate Owner. As an example, this could be accomplished by supplying the Entity’s
serial number or a purchase order number in the query.

The Service may choose to limit the ability to make a query to authenticated users.

Both the query to the Service and the response to the Participant shall employ end-to-end encryption and integrity
protection. Keys to provide this protection should be established using the steps taken to achieve the aforementioned
assurances between the Participant and the Service. This could be accomplished, for instance, with a TLS-protected
channel authenticated by the Service’s certificate.

Entities that are manufactured by a company that will use a Service to facilitate bootstrapping shall trust a peer that holds

its bootstrapping key. The level of trust is commensurate with the level of assurance the Service obtains in the legitimacy

of valid queries. Entities shall not perform a function whose sensitivity is greater than the level of trust the Entity has in the
holder of its bootstrapping key.

A Participant that has obtained an Entity’s bootstrapping key from a Service can, in effect, become a Service itself in order
to bootstrap the Entity’s key to another Participant. This process supports resale of Entities and allows the full life-death-
life cycle of the Resurrecting Duckling.

A new Participant may obtain a bootstrapping key from a Service which may have been a past Participant. The new
Participant shall trust that the Service had the necessary assurances when it obtained the Entity’s bootstrapping key. It shall
further trust that the Service safeguarded the bootstrapping key so it can satisfy its requirements when it bootstraps the key
to the new Participant. Caveat emptor applies.

5.8 Push Button PKEX-based

5.8.1 Overview

Even if the regular push button relies on a hardware switch, it is also possible to use a "virtual" button through a user
interface if the Configurator or Enrollee have a dedicated screen.

The user initiates the procedure by pressing the button on Configurator and Enrollee. At the end of the procedure,
Enrollee is onboarded without any more user interaction. In Push button PKEX-based, it is assumed that both
Bootstrapping keys of Initiator and Responder are mandatory.

To achieve the Push Button PKEX-based method, the following steps are completed in the following order:

e On Configurator, the user presses the button first The Push Button protocol will succeed if the user presses the
button on the Enrollee first, but in that case, there is an attack possible, See the threat analysis, section 1.6.2.7

e The user presses button on Enrollee that triggers a Push Button Presence Announcement action frame
(Broadcast)

e Configurator detects the action frame coming from Enrollee and responds with a Push Button Presence
Announcement Response action frame (Unicast) carrying a Nonce and other useful information for coherency
cross-checking

e Once Enrollee has detected the BSSID on which DPP protocol should be performed, PKEX bootstrapping
mechanism starts between Enrollee and Configurator using a code tied to the Configurator Nonce and a
dedicated Push Button identifier

e The regular DPP protocol (Authentication & Configuration) can proceed to finalize the onboarding

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 76 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

5.8.2 Discovery phase

The first information that Enrollee needs to request an onboarding is the Nonce sent by the Configurator. The Nonce is
obtained through new action frames called Push Button Presence Announcement and Push Button Presence
Announcement Response as detailed in sections 8.2.19 and 8.2.20.

Configurator discovery relies on two new Public Action Frame types (19, 20): Push Button Presence Announcement and
Push Button Presence Announcement Response.

When the user presses the button on the Enrollee, T1le and T2e are not active and PKEX is not in progress, the Enrollee
shall:

e Generate a list of channels as defined in section 6.2.2

e StartTle (305s)

e Start Round 1 by iterating over the channels in the channel list, broadcasting a 3 consecutive Push Button
Presence Announcement frames on each

e On each channel, after the Enrollee has broadcast the 3 consecutive Push Button Presence Announcement
frames, it shall wait for 50 ms for a Push Button Presence Announcement Response frame

e if Push Button Presence Announcement Response frame is NOT received and T1e has NOT expired, Round 1
shall be repeated.

o if it receives a Push Button Presence Announcement Response frame for the first time in Round 1, the Enrollee
shall note the channel, and continues iterating through the remaining channels it has not already broadcast to

e Start Round 2 by iterating over the channels in the channel list, broadcasting a 3 consecutive Push Button
PresenceAnnouncement frames on each

e On each channel, after the Enrollee has broadcast the 3 consecutive Push Button Presence Announcement
frames, it shall wait for 50 ms for a Push Button Presence Announcement Response frame

e Start T3 (10s), start T2e (30s) and cancel Tle

e When T3 has expired, start Round 3 by iterating over the channels in the channel list, broadcasting a 3
consecutive Push Button Presence Announcement frames on each

e On each channel, after the Enrollee has broadcast the 3 consecutive Push Button Presence Announcement
frames, it shall wait for 50 ms for a Push Button Presence Announcement Response frame

o if exactly one value of the hash of the Bootstrapping public key of the Configurator has been included in all the
Push Button Presence Announcement Response frames it has received, the Enrollee shall go to the noted
channel and expect PKEX to be initiated by the Configurator (using a PKEX Exchange Request frame). In
anticipation of PKEX being initiated, Enrollee shall send Push Button Presence Announcement frames every 500
ms until a PKEX Exchange Request frame is received (or T2e expires)

e if more than one value of the hash of the Bootstrapping public key of the Configurator has been included in all the
Push Button Presence Announcement Response frames it has received, the Enrollee shall abort the onboarding
process

¢ if the responder hash value in a Push Button Presence Announcement Response frame does not match the value
it sent in the Push Button Presence Announcement frame, the Enrollee shall abort the onboarding process

o if T2e expires and PKEX is not in progress, or it abandons PKEX, the Enrollee shall abort the onboarding process

o if the onboarding process is aborted or PKEX completes, the Enrollee shall cancel all timers

When the user presses the button on the Configurator, T1lc and T2c are not active and PKEX is not in progress/being
initiated, the Configurator shall:

e Start T1lc (100 s)

While T1lc or T2c is active, the Configurator shall listen for Push Button Presence Announcement frames as follows:

e Ifit receives a Push Button Presence Announcement frame, the Configurator shall respond to the Enrollee with a
unicast Push Button Presence Announcement Response frame, unless it has already done so less than 50 ms
ago

e Ifitreceives a Push Button Presence Announcement frame for the first time, the Configurator shall cancel T1c
and start T2c (15 s)

e Ifit receives a Push Button Presence Announcement frame and T2c has expired, and exactly one value of the
hash of the Bootstrapping public key of the Enrollee has been included in all the Push Button Presence

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 77 of 188

Wi-Fi Easy Connect™ Specification v3.0

Announcement frames it has received, the Configurator shall respond to the Enrollee with a unicast Push Button
Presence Announcement Response frame and initiate PKEX (using a PKEX Exchange Request frame) as
specified in section 5.6, except that the Configurator uses the channel it is listening on even if that is not a
channel listed in section 5.8.3.
If more than one value of the hash of the Bootstrapping public key of the Enrollee has been included in all the
Push Button Presence Announcement frames it has received, the Configurator shall abort the onboarding process
If T1c expires (as opposed to being cancelled), or it abandons PKEX, the Configurator shall abort the onboarding

process

If the onboarding process is aborted or PKEX completes, the Configurator shall cancel all timers

The Configurator must also abort the onboarding process if it had received Push Button Presence Announcement frames
with different hash values during a period of T4 (110 s) before its button was pressed that did not result in successful PKEX
exchanges.
The message flow is depicted in Figure 5 and all timers settings and roles are defined in Table 18.

Table 18. Push Button timers settings and roles

Timer Value (in sec) | Start Stop Role
Tle 30 PB is pressed on Beginning of T3 or | Ensures that a Configurator is ready to start an onboarding process
Enrollee Expiration within 30s. If not ready, the onboarding process is aborted.
T2e 30 Beginning of T3 Expiration Ensures the user has the time to return back to the Configurator
when Enrollee button is pressed first
Ensures the enrollee stops sending PBPA every 500ms in case the
Configurator does not respond anymore
Detection of Configurator session overlap
T3 10 When Round2 is Expiration Is there to save power and not flood hundreds of broadcast frames
over
Tlc 100 PB is pressed on PB PA response Ensures that an Enrollee is ready to start an onboarding process
Configurator is sent (beginning | within 100s. If not ready, the onboarding process is aborted.
of T2c) or
Expiration
T2c 15 PBPA response is Expiration Detection of Enrollee sessions overlap
sent Ensures the user has the time to return back to the Enrollee when
Configurator button is pressed first
T4 110 Continuously PB is pressed on Detection of Enrollee sessions overlap prior to the push button
started Configurator

Push Button Presence Announcement frame must carry the SHA-256 hash of the DER-encoded ASN.1
SubjectPublicKeyInfo of the Bootstrapping public key of the Enrollee (Responder):

Enrollee — Configurator: Push Button Presence Announcement (U)

where U = SHA-256(“chirp”|Br)

Push Button Presence Announcement response frame must carry the SHA-256 hash of the DER-encoded ASN.1
SubjectPublicKeylInfo of the Bootstrapping public key of the Enrollee (Responder) and the Configurator (Inititiator) and the
Configurator Nonce:

Configurator— Enrollee: Push Button Presence Announcement Response (R)

where R =(SHA-256("chirp”|Bi), SHA-256(“chirp”|Br), C-Nonce)

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 78 of 188

Wi-Fi Easy Connect™ Specification v3.0

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 79 of 188

Telianc”

Wi-Fi Easy Connect™ Specification v3.0
5.8.3 PKEX push button-based

Once the discovery phase successfully ended, PKEX protocol can be initiated.

The PKEX Exchange Request and PKEX Exchange Response are detailed in PKEX Exchange Phase in 5.6.2. with a
code that is tied to Configurator Nonce as described below. The code identifier used in PKEX push button-based is
mandatory to distinguish PKEX protocol from any regular ones using a dedicated prefix.

The code and the identifier are defined as follows:
code = C-Nonce and identifier = “PBPKEX"

Except the predefined channel, the code and the identifier, other parameters and other remaining exchanges are like the
original PKEX protocol i.e., PKEX Commit-Reveal Request and Response.

Once both bootstrapping keys are received (Bi and Br), Enrollee and Configurator must check if they are consistent with
those received in Push button Presence Announcement messages. Otherwise, onboarding process must be aborted.

5.8.4 DPP Authentication and Configuration protocol

Messages of DPP authentication protocol in 6.3 and DPP configuration protocol in 6.4 are exchanged between the
Configurator and Enrollee after PKEX push button-based phase so as to finalize the DPP push button enroliment process.

5.8.5

Push Button PKEX-based security mitigations

As already mentioned in Threats to Push Button, the lack of Configurator and Enrollee trust can lead to multiple
unexpected scenarios. The various scenarios and mitigations are detailed in Table 19.

Table 19. Push button PKEX-based unexpected scenarios

Scenario 1 : lllegitimate
Configurator

Scenario 2 : lllegitimate
Enrollee

Scenario 3: 2 Enrollees
detected

Configurator Status

No Enrollee onboarded within the
listening period

Only one Enrollee attempts
an onboarding process within
the listening period and an
Enrollee is onboarded

At least 2 concurrent
Enrollees attempt an
onboarding process within
the listening period.

Enrollee Status

Onboarded on unwanted
Configurator

Not onboarded

Not onboarded

Mitigation scenario

User must be notified on
Configurator Ul that onboarding
process failed

User must be notified that an
onboarding process failed on
Enrollee.

Configurator Ul
would/should/could present
“most recent PB-enabled
Enrollee” so user can easily
rectify any problems that
arise in the attacker-as-
Enrollee situation

Configurator must abort the
onboarding process

Configurator Ul
would/should/could present
“most recent PB-enabled
Enrollee” so user can easily
rectify any problems that
arise in the attacker-as-
Enrollee situation

Scenario 1: Rogue Configurator

Push button has been pressed on Configurator. After the Configurator listening period has been elapsed, onboarding
process has failed on Configurator because no Enrollee has been enrolled. In that case, user must be notified that the
onboarding session failed. The behavior must be the same if the legitimate Enrollee is onboarded. It is likely onboarded
on a rogue Configurator. If the user does not react, Enrollee stays connected to the rogue Configurator.

Scenario 2: lllegitimate Enrollee

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 80 of 188

Wi-Fi Easy Connect™ Specification v3.0

Push button has been pressed on Configurator. The legitimate Enrollee has not engaged an onboarding process (push
button has not been pressed) within the Configurator listening period but an illegitimate Enrollee has been enrolled on the
Configurator. In that case, user must be notified that the onboarding session failed on Enrollee after the Enrollee listening
period elapsed. If the user does not react, illegitimate Enrollee stays enrolled.

Scenario 3: 2 Enrollees detected

This scenario happens when 2 Enrollee have engaged a push button onboarding process within the Configurator listening
period. Configurator can detect that at least 2 Enrollees attempt to connect to the same Configurator. In that case, DPP
protocol must be aborted as soon as possible, and a notification must be sent to the user to indicate that an overlapping
session has been detected. At the end, no Enrollee must be enrolled.

If Push button bootstrapping is aborted for any reason, including the mitigations above, or if DPP Authentication and
Provisioning is not successful, the Enrollee shall discard the bootstrapping key used with the aborted session and
generate a new, unique bootstrapping key for subsequent Push button bootstrapping session.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 81 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

6 DPP Protocols

6.1 Overview

DPP consists of several protocols-- an Authentication protocol, a Configuration protocol, a Reconfiguration protocol--
spoken between an Initiator and a Responder (one of whom is known as a Configurator), and a Network Access protocol
spoken by two parties that have previously concluded the Authentication protocol and Configuration protocol with a
shared Configurator. The goal of DPP is the establishment of credentials to provide secure network access.

It is assumed that the Initiator has a way to bootstrap trust in the Responder’s public bootstrapping key, using, for
instance, one of the methods from section 5. Optionally, the Initiator can also provide its public bootstrapping key to the
Responder using one of the methods in section 5 to enable mutual authentication.

Once the Initiator has obtained the Responder’s representation of its public bootstrapping key, the DPP authentication
protocol is initiated. The Initiator now actively searches for the device to configure, or for devices to perform configuration
(depending on whether it is assuming the role of configurator or enrollee, respectively) by beginning the DPP
authentication protocol.

Unprovisioned devices that are not capable of acting as Initiators and have no means of engaging in an interactive
bootstrapping procedure (such as headless devices) shall periodically announce their presence, as unprovisioned
devices, by sending DPP Presence Announcement frames to trigger a Configurator to initialize DPP Authentication and
Configuration.

During the initial exchange of DPP authentication frames, the Initiator and Responder agree upon the roles they will
play—Configurator or Enrollee—during configuration. Regardless of Initiator or Responder role, the Configurator’s
protocol key is always ephemeral (used once and thrown away) and the Enrollee’s protocol key always becomes its
network access provisioning key.

6.2 DPP Presence Announcement

An Enrollee supporting version 2 or greater of DPP shall support sending DPP Presence Announcement frames as
described in this section. An Enrollee acting in a Responder role uses DPP Presence Announcement to signal a potential
Configurator that it is ready to engage in a DPP exchange. Each DPP Presence Announcement frame contains a hash
that includes the sender's (Enrollee) public bootstrapping key. A Configurator that has a public bootstrapping key for a
device (determined by comparing the computed from the bootstrapped key with the value in the received DPP Presence
Announcement frame) shall initiate the DPP Authentication exchange to that device using the channel on which the DPP
Presence Announcement frame was received.

6.2.1 Computing the Hash for Presence Announcement

To prevent leakage of the hash of an unprovisioned device's public key, the hash for a DPP Presence Announcement
frame shall be a SHA-256 hash of the string "chirp" concatenated with the sender's DER-encoded ASN.1
subjectPublicKeylnfo public bootstrapping key:

Enrollee — Configurator: SHA-256("chirp” | Br)

6.2.2 Generation of Channel List for Presence Announcement

Enrollees that issue DPP Presence Announcement frames shall derive a channel list on which to send these frames using
the following steps:

1. If the enrollee includes a list of global operating class/channel pairs in its DPP URI, add all those channels to the
channel list excluding channels for which unsolicited transmissions are prohibited by local regulations (e.g.,
channels subject to Dynamic Frequency Selection); then,

2. Select preferred Presence Announcement channels on which to send a DPP Presence Announcement frame to
the broadcast address. For interoperability purposes, the preferred channel shall be one from each of the
following bands, as supported by the Enrollee:

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 82 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

= 2.4 GHz: Channel 6 (2.437 GHz)

= 5 GHz: Channel 44 (5.220 GHz) if local regulations permit operation only in the 5.150 — 5.250 GHz band and
Channel 149 (5.745 GHz) otherwise

= 60 GHz: Channel 2 (60.48 GHz)

= Sub-1 GHz: Channel 37 (920.5 MHz) if local regulations permit use of global operating class 68 (ITU Region
2, Australia, New Zealand, Singapore) otherwise Channel 1 (863.5 MHz) if local regulations permit use of
global operating class 66 (Europe)

Add the preferred Presence Announcement channels to the channel list; then,

3. Scan all supported bands and add each channel on which an AP is advertising the Configurator Connectivity
element (Section 8.5.2) to the channel list; then,

4. Remove any second or subsequent occurrence of duplicate channels in the channel list.

6.2.3 Enrollee Presence Announcement Procedure

An Enrollee shall begin transmitting the Presence Announcement frames when the following conditions are true:

e The Enrollee is in DPP Responder role, and

e The Enrollee has an active bootstrapping key that is capable of being transmitted through one or more of the
bootstrapping mechanisms specified in Section 5, and

e The Enrollee is ready to engage in the DPP Authentication protocol exchange using the active bootstrapping key

Once the conditions above are met, the Enrollee shall follow the procedure below for sending the Presence
Announcement frames:

1. For each channel in the channel list generated as per Section 6.2.2, the Enrollee, shall send a DPP Presence
Announcement frame and listen for 2 seconds to receive a DPP Authentication Request frame. If a valid DPP
Authentication Request frame is not received, it shall repeat the presence announcement for the next channel in
the channel list.

2. When all channels in the channel list have been exhausted, the Enrollee shall pause for at least 30 seconds
before repeating the procedure in step 1 above. If the Enrollee's DPP URI includes a "channel-list" (Section 5.2.1)
then the Enrollee should dwell on the channels from that list; otherwise, it should dwell on the preferred Presence
Announcement channels as specified in Section 6.2.2. The Enrollee should increase the wait time on channels in
the channel list each time the procedure in step 1 is repeated.

3. If the device has cycled through the procedure (Steps 1 & 2) four times without receipt of a valid DPP
Authentication Request frame, the Enrollee may wait some amount of time before resuming the procedure. Prior
to resuming the presence announcement procedure, however, it shall generate a new channel list using the steps
specified in Section 6.2.2.

If a valid DPP Authentication Request frame is received at any time during the above procedure, the device shall
terminate the Presence Announcement procedure and proceed with authentication and configuration. If authentication or
configuration fails, the device shall resume the Presence Announcement procedure.

Devices which have cycled through the procedure above (steps 1, 2, and 3) may choose to wait an implementation-specific
amount of time before retrying it. If the device includes a "channel-list" (Section 5.2.1) in its DPP URI, then it should dwell
on the channels from that list; otherwise, it should dwell on the preferred Presence Announcement channels as specified in
Section 6.2.2 Implementations should factor in the bootstrapping procedure for the particular device to decide how long, if
any, to wait before resuming the above procedure. Implementations may choose to abandon the procedure entirely and
require some additional action, e.g. reboot of device, button press, before the device reattempts onboarding.

The source MAC address of a valid Presence Announcement frame overrides any MAC address info received in the DPP
URI for the DPP message exchange with that peer.

6.2.4 Configurator Procedure and Configurator Connectivity Element

Configurators that are not serving a BSS and are expecting DPP Presence Announcement frames shall dwell on one of
the aforementioned preferred channels (step 1 of Section 6.2.1) and provision Enrollees as they announce their presence.
If no devices are detected after two minutes, the Configurator switches to the next preferred channel, if applicable.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 83 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

Configurators that are serving BSSs and advertise the Configurator Connectivity element (section 8.5.2) may process
DPP Presence Announcement frames received on the BSS's operating channel(s) of the BSS(s).

6.3 DPP Authentication protocol

6.3.1 Overview

The DPP Authentication protocol uses trusted public bootstrapping keys, obtained using a technique from section 5, to
strongly authenticate the Responder to the Initiator and optionally the Initiator to the Responder. It consists of a 3-
message exchange, including the exchange of ephemeral “protocol keys”, that generates a shared secret and
authenticated key. Ephemeral protocol keys ensure that generated secrets are distinct even if authenticating
bootstrapping keys are reused in a subsequent run of the DPP Authentication protocol. The protocol key of the Enrollee is
used as Network Access key (netAccessKey) later in the DPP Configuration and DPP Introduction protocol. The protocol
key of the Configurator is discarded after the DPP Authentication protocol completes.

In order for the Initiator and Responder to engage in DPP Authentication protocol, they shall first agree on a channel on
which to exchange DPP Authentication messages. Depending on the manner in which bootstrapping is performed (one of
the techniques from section 5), a channel may be implicitly agreed upon or may need to be explicitly negotiated. The
sections below specify mechanisms when a channel for DPP Authentication exchange needs to be explicitly agreed upon.
If an Initiator only supports Protocol Version 1 or if it receives a DPP URI from a Responder that does not include a
Protocol Version in the bootstrapping information (i.e., the Responder is Protocol Version 1), then the Initiator shall use
the mechanism specified in Section 6.3.1. Initiators and Responders supporting Protocol Version 2 or higher shall use the
mechanism specified in Section 6.3.2.

6.3.1.1 Channel Agreement with Protocol Version 1

The Responder listens on channels included in the channel list provided in the bootstrapping information or on any
available channel if the optional channel list is not provided, waiting to receive a DPP Authentication Request frame. Upon
successful receipt of a DPP Authentication Request frame, the Responder transmits a DPP Authentication Response
frame to the Initiator.

The Initiator shall determine the list of possible DPP authentication channels by taking the intersection of the channels it
supports under the current regulatory requirements and the channels that are present in the bootstrapping information, if
included. If the bootstrapping information does not include the optional channel list, the Initiator uses all the channels it
supports under the current regulatory requirements as the list of possible DPP authentication channels. If the list of
possible DPP authentication channels is empty, DPP authentication cannot be performed and the Initiator should notify
the user.

The Initiator shall select a channel from the list of possible DPP authentication channels and transmit a DPP
Authentication Request frame. If the bootstrapping information includes the MAC address of the Responder, this frame
shall be sent as a unicast frame to that address; otherwise, this frame is sent to the broadcast address. The Initiator sets a
timer to five seconds and listens to receive a DPP Authentication Response frame from the Responder. When using
unicast DPP Authentication Request frame, the Initiator may leave the channel if no ACK frame is received for the DPP
Authentication Request frame (for example, to allow the radio to be used on other channels for concurrent operations) or if
the ACK frame is received but no DPP Authentication Response frame is received within five seconds. If the Responder
responds with a DPP Authentication Response frame, the timer is cleared and discovery completes. If the timer expires
without a response from the Responder, and an ACK frame was received for the DPP Authentication Request frame, the
Initiator may move to the next available channel without retransmitting the DPP Authentication Request frame. Otherwise,
if the timer expires without a response from the Responder, the Initiator rebroadcasts the DPP Authentication Request
frame and resets the timer. This process shall be retried at least five times. If the Responder never responds, discovery is
abandoned and the Initiator attempts DPP Authentication on another channel in the list of possible DPP authentication
channels, if more than one channel is available. This iteration over the possible channels continues until a valid response
is received or all the possible channels have been attempted at least once.

6.3.1.2 Channel Agreement with Protocol Version 2 and Higher

The Responder engages in the DPP Authentication exchange using the procedures below:
e If the Responder is an Enrollee, it uses the Presence Announcement procedure as per Section 6.2
© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 84 of 188

Wi-Fi Easy Connect™ Specification v3.0 @

Telianc”

o |If the Responder is a Configurator, it should populate the optional channel list with a small number of channels
(ideally only a single channel) in the DPP URI

e If the Responder populates the optional channel list in the DPP URI, the Responder listens on channels in the
channel list

e Upon successful receipt of a DPP Authentication Request frame, the Responder transmits a DPP Authentication
Response frame to the Initiator

e Upon successful validation of the DPP Authentication Response frame, the Initiator shall transmit a DPP
Authentication Confirm frame to the Responder to complete the authentication

The Initiator engages in the DPP Authentication exchange using the procedure below:

o If the Initiator is a Configurator and the Responder supports Protocol Version 2 or higher, the Initiator uses the
Presence Announcement procedure as per Section 6.2. Upon receipt of the Presence Announcement frame from
the Responder, the Initiator shall transmit a unicast DPP Authentication Request frame to the MAC address from
which it received the Presence Announcement frame. The Initiator sets a timer to five seconds and listens to
receive a DPP Authentication Response frame from the Responder. If the timer expires without a response from
the Responder, the Initiator shall wait for a new Presence Announcement frame from the Responder. When the
Initiator successfully receives a DPP Authentication Response frame, the timer is cleared and discovery
completes

o If the Initiator is an Enrollee or if the Responder is a Protocol Version 1 device, the Initiator shall use the Protocol
Version 1 procedure (see section 6.3.1.1) to engage in DPP Authentication with the Responder

6.3.1.3 Authentication Protocol Completion

Once DPP Authentication is complete, the Peer acting as the enrollee transmits a DPP Configuration Request frame to
the Configurator.

Upon successful receipt of the DPP Configuration Request frame, the Configurator transmits the DPP Configuration
Response frame to the Enrollee. The Enrollee validates the configuration information and transmits a DPP Configuration
Result frame to complete configuration of the Enrollee.

6.3.1.4 Protocol Conventions

Keys are identified by a “P” or “B” for protocol or bootstrapping respectively. Private keys are lowercase and public keys are
uppercase. Subscripts “I”, and “R” represent the participant roles, Initiator and Responder, respectively. For instance, B is
the Initiator’s public bootstrapping key and bi is the Initiator’s private bootstrapping key. Table 20 below lists the complete
notation set. A freshly generated ephemeral key shall be used for each DPP Authentication exchange ; bootstrapping keys
can be static and reused.

Table 20. DPP Authentication Key Notation

Initiator Bootstrapping key Protocol key
Responder n (B,b) (P,p)
(R)
Public key
B, B P, P

(Upper case) bR bR

Private key by, br P, PR

(Lower case) ’ ’

The security of the DPP Authentication protocol requires each entity to prove possession of private keys using AES-SIV
(RFC 5297 [2]). The private keys are used to generate secrets through a Diffie-Hellman exchange and derivatives of

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 85 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

those secrets are used to protect messages sent in the DPP Authentication protocol. The ability of an entity to wrap
messages with AES-SIV using these secrets proves possession of private keys used to generate the secrets.

All messages used in the DPP Authentication protocol are 802.11 Public Action frames (see section 8) containing a DPP-
specific header and a series of attributes (see section 8.1). Attributes wrapped by AES-SIV are represented in DPP
protocol messages as a Wrapped Data attribute. The value of the Wrapped Data attribute shall be the ciphertext,
including the authenticating tag, output by AES-SIV. Unwrapping of AES-SIV-protected data results either in one or more
attributes or failure.

Invocations of AES-SIV in the DPP Authentication protocol that produce ciphertext that is part of an additional AES-SIV
invocation do not use AAD; in other words, the number of AAD components is set to zero. All other invocations of AES-
SIV in the DPP Authentication protocol shall pass a vector of AAD having two components of AAD in the following order:
(1) the DPP header, as defined in Table 34, from the OUI field (inclusive) to the DPP Frame Type field (inclusive); and (2)
all octets in a DPP Public Action frame after the DPP Frame Type field up to and including the last octet of the last
attribute before the Wrapped Data attribute. The Wrapped Data attribute shall be the last attribute in a DPP Public Action
frame.

6.3.1.5 DPP Capabilities Negotiation

When initiating the DPP Authentication protocol, the Initiator acts either as the Configurator or the Enrollee, or it indicates
that it can be either. The Initiator and the Responder exchange Capabilities information during DPP Authentication to
establish that one device acts as the Configurator and the other acts as the Enrollee.

The Initiator and Responder include their capabilities in the DPP Authentication Request and DPP Authentication
Response frames, respectively. The summary of capabilities values and fields is given in Table 21.

Table 21. DPP Authentication Capabilities Role Summary

Initiator Responder DPP Status

Configurator Configurator STATUS_NOT_COMPATIBLE
Configurator Enrollee STATUS_OK

Enrollee Configurator STATUS_OK

Enrollee Enrollee STATUS_NOT_COMPATIBLE
Configurator or Enrollee Configurator STATUS_OK

Configurator or Enrollee Enrollee STATUS_OK

The Initiator shall include its role(s) in the DPP Authentication Request frame. After successfully receiving a DPP
Authentication Request frame, the Responder shall compare the value of the Role field from the Initiator to the expected
role and respond with a DPP Authentication Response frame with a DPP Status code set to a DPP Status indicated in
Table 21. The Responder shall include its role in the Capabilities field as well as a DPP Status field in the DPP
Authentication Response frame. The DPP Status field shall include a status corresponding to the DPP Status column of
Table 21 with a value in Table 63. After successfully receiving the DPP Authentication Response frame, the Initiator shall
compare the value of the Role field from the Responder to the expected role and respond with a DPP Authentication
Confirm frame with a DPP Status code set to a result indicated in Table 21.

6.3.2 DPP Authentication Request

The Initiator generates a random nonce whose length is determined according to Table 4, generates a protocol key pair
(P p) in the agreed upon domain parameter set (determined by the Responder’s bootstrapping key), and performs a
Diffie-Hellman to generate a shared secret M and a first intermediate key, k1. The Initiator wraps its nonce and its
capabilities in the first intermediate key using AES-SIV. It then performs a SHA-256 hash on the DER-encoded ASN.1
SubjectPublicKeyInfo of the Responder’s public bootstrapping key and also performs a SHA-256 hash on the DER-
encoded ASN.1 SubjectPublicKeylInfo of its public bootstrapping key. The Initiator then places the hash of the
Responder’s public bootstrapping key, the hash of its public bootstrapping key, the Protocol Version attribute, an Initiator
Protocol Key attribute indicating its public protocol key (Pi), a Wrapped Data attribute that contains the Initiator Nonce

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 86 of 188

Wi-Fi Easy Connect™ Specification v3.0

attribute and the Initiator Capabilities attribute in a DPP Authentication Request frame. The Protocol Version Attribute is
conditionally included when the protocol version is 2 or greater. If the Initiator prefers to use a different channel for going
through the rest of the DPP Authentication and DPP Configuration exchanges to avoid off channel operations (for
example, when operating as an AP), the Initiator adds the optional Channel attribute to the message.

M =p:i * Br
k1 = HKDF(<>, “first intermediate key”, M.x)
Initiator — Responder: SHA-256(Br), SHA-256(B)), P, [Protocol Version], [Channel,] {I-nonce, I-capabilities}k:

6.3.3 DPP Authentication Response

The Responder receives the DPP Authentication Request frame and checks whether a SHA-256 hash of the DER-
encoded ASN.1 SubjectPublicKeylnfo of its public bootstrapping key, Bg, is in the frame. If not, it discards the frame and
returns to its quiescent state. If a hash of its key is in the frame, it next checks whether it has a copy of the Initiator’s public
bootstrapping key, Bi,whose SHA-256 hash matches that in the frame. If so, the Responder may perform mutual
authentication. Specifically, the Responder shall request mutual authentication when the hash of the Responder
bootstrapping key in the authentication request indexes an entry in the bootstrapping table corresponding to a
bidirectional bootstrapping method, for example, PKEX or BTLE.

If the optional Channel attribute is included, the Responder determines whether it can use the requested channel for the
following exchanges. If so, it sends the DPP Authentication Response frame on that channel. If not, it discards the DPP
Authentication Request frame without replying to it.

The Responder generates the shared secret M and intermediate key k1 and attempts to unwrap the Initiator’s nonce using
AES-SIV.

M =br * P
k1 = HKDF(<>, “first intermediate key”, M.x)

If AES-SIV returns FAIL, the Responder abandons the exchange. Otherwise, it checks the Initiator’'s capabilities. If the
Responder is not capable of supporting the role indicated by the Initiator, it shall respond with a DPP Authentication
Response frame indicating failure by adding the DPP Status field set to STATUS_NOT_COMPATIBLE, a hash of its
public bootstrapping key, a hash of the Initiator's public bootstrapping key if it is doing mutual authentication, Protocol
Version attribute if it was sent in the DPP Authentication Request frame and is version 2 or higher, and Wrapped Data
element consisting of the Initiator’'s nonce and the Responder’s desired capabilities wrapped with K1:

Responder — Initiator: DPP Status, SHA-256(Br), [SHA-256(B),][Protocol Version], { I-nonce, R-capabilitieS}k
The Responder then aborts the exchange.

If the Responder needs more time to respond, e.g., to complete bootstrapping of the Initiator’s bootstrapping key, it shall
respond with a DPP Authentication Response frame indicating that it will reply in full at a later time by adding the DPP
Status field set to STATUS_RESPONSE_PENDING, hashes of both bootstrapping keys obtained from the DPP
Authentication Request frame, Protocol Version attribute if it was sent in the DPP Authentication Request frame and is
version 2 or higher, and wrapped data consisting of the Initiator’'s nonce and the Responder’s capabilities wrapped with
k1.

Responder — Initiator: DPP Status, SHA-256(Br), SHA-256(B), [Protocol Version,] { I-nonce, R-capabilities}

The Responder shall not abort the exchange. When the Initiator’s bootstrapping key has been bootstrapped, the
Responder shall continue by sending a full DPP Authentication Response frame as follows.

1. The Responder first selects capabilities that support the Initiator—for example, if the Initiator states it is a
Configurator, then the Responder takes on the Enrollee role.

2. Next, the Responder generates its own nonce, R-nonce, whose length is determined according to Table 4, a
protocol key pair (Pr/pr), one or two intermediate elements depending on whether mutual authentication is
performed, encryption keys, k2 and ke, and a base key, bk:

N =pr* P
© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 87 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

k2 = HKDF(<>, “second intermediate key”, N.x)

[L = ((br + pr) modulo q) * B

bk = HKDF-Extract(l-nonce | R-nonce, M.x | N.x [| L.x])
ke = HKDF-Expand(bk, "DPP Key", length)

Where q is the order of the elliptic curve group, length is the digest length in octets of the hash function used (see
Table 4), and where L is only computed and used in the computation of ke when doing mutual authentication.

3. The Responder then generates an authenticating tag:
R-auth = H(I-nonce | R-nonce | Pi.x | Pr.X | [Bi.x |] Br.X | 0)

Where 0 is a single octet with the value zero and where [Bi.x |] is only used in the computation of R-auth when
doing mutual authentication.

4. The Responder then wraps the Responder Authenticating Tag attribute as shown in step 3 with the encryption
key ke and then wraps the Initiator Nonce, Responder Nonce, Responder Capabilities attributes and the wrapped
Responder Authenticating Tag attribute with the intermediate key k2.

5. The Responder then places a DPP Status field with value STATUS_OK, a hash of its public bootstrapping key, a
hash of the Initiator’s public bootstrapping key if it is doing mutual authentication, a public Responder Protocol
Key attribute, Protocol Version attribute if it was sent in the DPP Authentication Request frame and is version 2 or
higher, and a Wrapped Data attribute as constructed in step 4 in a DPP Authentication Response frame.

6. The DPP Authentication Response frame is then transmitted to the Initiator.

Responder — Initiator: DPP Status, SHA-256(Br), [SHA-256(B)),] Pr, [Protocol Version], { R-nonce, I-nonce, R-
capabilities, { R-auth ke 2

where [SHA-256(B)),] is only present when doing mutual authentication.
6.3.4 DPP Authentication Confirm

Upon receipt of a DPP Authentication Response frame, the Initiator checks that the value of the DPP Status field is set to
STATUS_OK. If it is not, the Initiator unwraps the wrapped data portion of the frame using k1, and checks the
Responder’s indicated capabilities. If unwrapping fails, the Initiator aborts the exchange. If unwrapping is successful and
the value of the DPP Status field is set to STATUS_NOT_COMPATIBLE, the Initiator aborts the exchange and may
initiate back to the Responder with a different set of Initiator capabilities. If unwrapping is successful and the value of the
DPP Status field is set to STATUS_RESPONSE_PENDING, the Initiator shall not abort the exchange and shall wait for a
full DPP Authentication Response frame. The Initiator should set a timer to clean up the nascent connection if a response
is not received in an acceptable amount of time. The time limit is not specified in this specification.

If the value of the DPP Status field is set to STATUS_OK, the Initiator checks whether a hash of its public bootstrapping
key is included in the response. If so, the Initiator performs mutual authentication, otherwise it does not.

The Initiator then validates the received public protocol key, Pr. If it is not valid, the protocol terminates, otherwise the
Initiator uses the received public protocol key to generate the intermediate key, k2:

N=p *Pr
k2 = HKDF(<>, “second intermediate key”, N.x)

The Initiator then unwraps the nonces and the Responder’s capabilities key and the wrapped Responder’s authentication
tag using k2. If unwrapping returns FAIL, it aborts the exchange. Otherwise, it verifies that the received I-nonce is the
same as the I-nonce sent in the DPP Authentication Request frame. If they differ, the Initiator aborts the exchange.
Otherwise, it verifies that the Responder’s capabilities are compatible with its own (that the Responder has not chosen the
same non Peer-to-Peer role that it chose). If they are not, the Initiator shall respond with a DPP Authentication Confirm
frame indicating failure by adding the DPP Status field set to STATUS_NOT_COMPATIBLE, a hash of the Responder’s
public bootstrapping key, a hash of its public bootstrapping key if it is doing mutual authentication, and wrapped data
consisting of the Responder’s nonce wrapped with k2:

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 88 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

Initiator — Responder: DPP Status, SHA-256(BRr), [SHA-256(B)),] { R-nonce }k2

Otherwise, the capabilities are compatible and the Initiator then uses the received public key(s) and the nonces to
generate the remaining intermediate key(s), the base key, bk, and the encryption key, ke:

[L=bi*(Br+ PRr)]
bk = HKDF-Extract(l-nonce | R-nonce, M.x | N.x [| L.x])
ke = HKDF-Expand(bk, "DPP Key", length)

As above, length is the digest length in octets of the hash function used (see Table 4), and L is only computed and used in
the computation of ke when doing mutual authentication.

k1 shall be irretrievably deleted upon processing of the DPP Authentication Response frame.

The Initiator unwraps the authenticating tag using the encryption key ke. If unwrapping returns FAIL, the Initiator aborts
the exchange. Otherwise, it generates a verifier:

R-auth’ = H(l-nonce | R-nonce | Pi.x | Pr.X | [Bi.X |] Br.X | 0)

Where 0 is a single octet with the value zero and where [Bi.x |] is only used in the computation of R-auth' when doing
mutual authentication. If R-auth differs from R-auth’ authentication fails and the Initiator shall respond with a DPP
Authentication Confirm frame indicating failure by adding a hash of the Responder's public bootstrapping key, a hash of
its public bootstrapping key if mutual authentication was indicated in the DPP Authentication Response frame, the DPP
Status field set to STATUS_AUTH_FAILURE, and wrapped data consisting of the Responder’s nonce wrapped in k2:

Initiator — Responder: DPP Status, SHA-256(BRr), [SHA-256(B)),] { R-nonce }2

The Initiator should generate an alert indicating its inability to authenticate the Responder. The Initiator then aborts the
exchange.

Otherwise, R-auth is identical to R-auth’ and the Initiator authenticates the Responder. The Initiator then generates its
own authenticating tag:

l-auth = H(R-nonce | I-nonce | Pr.X | Pi.x | BR.X | [Bi.x|]1)

where 1 is a single octet with a value one and where [Bi.x |] is only used in the computation of I-auth when doing mutual
authentication. The I-auth is encoded in the Initiator Authenticating Tag attribute. The Initiator wraps the Initiator
Authenticating Tag attribute with ke.

The Initiator then places a hash of Responder’s public bootstrapping key, a hash of its public bootstrapping key if mutual
authentication is being performed, DPP Status field set to STATUS_OK, and a Wrapped Data attribute containing the
Initiator Authenticating Tag attribute into a DPP Authentication Confirm frame. The Initiator transmits this frame to the
Responder.

Initiator — Responder: DPP Status, SHA-256(BRr), [SHA-256(B)),] { I-auth }«e

The Responder obtains the DPP Authentication Confirm frame and checks the value of the DPP Status field. If the value
of the DPP Status field is STATUS_NOT_COMPATIBLE or STATUS_AUTH_FAILURE, the Responder unwraps the
wrapped data portion of the frame using k2. If unwrapping fails, the Responder aborts the exchange. If unwrapping is
successful, the Responder should generate an alert indicating the reason for the protocol failure.

Otherwise, if the value of the DPP Status field is STATUS_OK, the Responder unwraps the authenticating tag. If
unwrapping returns FAIL, it aborts the exchange. Otherwise, it generates a verifier, l-auth’:

[-auth’ = H(R-nonce | I-nonce | Pr.X | Pi.x | BrX | [Bi.x |] 1)

Where 1 is a single octet with a value one and where [Bi.x |] is only used in the computation of I-auth’ when doing mutual
authentication. If I-auth differs from l-auth’, the Responder fails to authenticate the Initiator and aborts the exchange.
Otherwise, it authenticates the Initiator. If authentication fails, this should result in an alert given to the user.

NOTE: unless mutual authentication is performed, the authentication of the Initiator to the Responder is weak and
amounts to proof that it is an active participant in the exchange and knows the Responder’s public key (in other words, it
was acquired with some implied trust through a bootstrapping mechanism, for example one of those from section 5).

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 89 of 188

Wi-Fi Easy Connect™ Specification v3.0

Upon completion of the DPP Authentication protocol, the secret elements M, N, and L if generated, and intermediate keys
k1 and k2 shall be irretrievably deleted. The key, ke, can now be used as a pairwise symmetric key between the Initiator
and Responder.

6.4 DPP Configuration Protocol

6.4.1 Overview

The request and response frames used in the DPP Configuration protocol use the Generic Advertisement Service (GAS)
frame format (as defined in [1]) and include a series of fields, with a vendor specific Advertisement Protocol ID. DPP
specific attributes follow the GAS frame header. All DPP Configuration Protocol messages except for the DPP
Configuration Request for Fragments frame, are AES-SIV protected. AAD for use with AES-SIV for protected messages in
the DPP Configuration protocol shall consist of all octets in the Query Request and Query Response fields up to the first
octet of the Wrapped Data attribute, which is the last attribute in a DPP Configuration frame. When the number of octets
of AAD is zero, the number of components of AAD passed to AES-SIV is zero. When a DPP Configuration Response
frame is fragmented, AES-SIV is applied to the full message prior to fragmentation. The fragmented frame shall be
reassembled before being decrypted.

The DPP Configuration Result and the DPP Connection Status Result frames are AES-SIV protected. The invocation of
AES-SIV for the DPP Configuration Result frame and the DPP Connection Status Result frame shall pass a vector of AAD
having two components of AAD in the following order: (1) the DPP header, as defined in Table 34, from the OUI field
(inclusive) to the DPP Frame Type field (inclusive); and (2) all octets in a DPP Public Action frame after the DPP Frame
Type field up to and including the last octet of the last Attribute before the Wrapped Data attribute. The Wrapped Data
attribute shall be the last attribute in a DPP Public Action frame.

The DPP Configuration protocol exchange shall immediately follow a successfully completed DPP Authentication protocol
exchange with the Enrollee sending the DPP Configuration Request frame within one second of the completion of DPP
Authentication. Both the Enrollee and the Configurator shall use the same MAC addresses and the same channel that
was used during DPP Authentication protocol exchange.

The DPP Configuration protocol exchange is typically a single request-response. In the event of a Configurator requesting
additional information, there can be multiple request-response exchanges comprising a single DPP Configuration protocol
exchange. When this happens, the Enrollee is stateful and the Configurator is stateless. That is, if a Configurator asks for
more information multiple times—e.g. a CSR in one response, a different protocol key in another—the Enrollee shall keep
track of all asks received during the entire DPP Configuration protocol exchange and shall satisfy them all in a single DPP
Configuration Request

6.4.2 DPP Configuration Request

Regardless of whether the Initiator or Responder took the role of Configurator, the DPP Configuration protocol is always
initiated by the Enrollee. To start, the Enrollee generates one or more DPP Configuration Request objects (see section
4.4) and generates a new nonce, E-nonce, whose length is determined according to Table 4. When the Configurator has
not indicated support for protocol version number 2 or higher, no more than one DPP Configuration Request object shall
be included. The E-nonce attribute and the DPP Configuration Request object attribute(s) are wrapped with ke. The
wrapped attributes are then placed in a DPP Configuration Request frame, and sent to the Configurator.

Enrollee — Configurator: { E-nonce, configRequest }«e
6.4.3 DPP Configuration Response

6.4.3.1 Configurator Handling

The Configurator successfully receives the DPP Configuration Request frame and passes the ciphertext to AES-SIV with
ke as the key. If AES-SIV returns FAIL, the Configurator aborts the exchange. Otherwise, it continues.

At this point, the Configurator has the Enrollee’s attributes and the Enrollee’s Network Access Key (netAccessKey).

If the Configurator does not want to configure the Enrollee, for example if the Enrollee wishes to be enrolled as an AP and
there are already enough APs in the network, the Configurator shall respond with a DPP Configuration Response

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 90 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

indicating failure by adding the DPP Status field set to STATUS_CONFIGURE_FAILURE and wrapped data consisting of
the Enrollee’s nonce wrapped in ke:

Configurator — Enrollee: DPP Status, { E-nonce }ke

If the Configurator is not able to proceed immediately with the DPP Configuration protocol and the delay would be too long
to handle using the GAS Comeback mechanism specified below, e.g. because a user decision is required, the
Configurator shall respond with a DPP Configuration Response by adding the DPP Status field set to
STATUS_CONFIGURE_PENDING and wrapped data consisting of the Enrollee’s nonce wrapped in ke:

Configurator — Enrollee: DPP Status, { E-nonce }«e

If the configRequest contained a MUD URL, the Configurator retrieves the MUD file from the indicated URL and may use
that information to assign an appropriate grouplD, if applicable, to a Connector.

If the Configurator is provisioning for a DPP network which uses public keys in Connectors from a curve that differs from
the one used in the DPP Authentication exchange, and the Enrollee did not include a new public key from the correct
group in the DPP Configuration Request, the Configurator generates a keypair on the desired curve, pc/Pc, and responds
with a DPP Configuration Response with the DPP Status field set to STATUS _NEW_KEY_NEEDED and wrapped data
consisting of the Enrollee's nonce, the Finite Cyclic Group attribute denoting the curve a public key is needed from, and Pc
, wrapped in ke:

Configurator - Enrollee: DPP Status, { E-nonce | Finite Cyclic Group| Pc Jxe
NOTE: The Configurator may reuse pc/Pc with multiple DPP Configuration Response messages to different Enrollees.

If the Enrollee included a new protocol key in the DPP Configuration Request frame but the Configurator did not request
one, the Configurator shall fail provisioning. If the Enrollee included a new protocol key in the DPP Configuration Request
frame and the Configurator requested a new protocol key with a previous STATUS_NEW_KEY_NEEDED response, the
Configurator extracts the Enrollee's new protocol key, Pe, and the Enrollee's Proof-of-Possession (POP) tag, Auth-I. It
then verifies that Pe is a valid point on the curve, and generates shared secrets and a provisional POP tag, Auth-I', as
follows:

S= Pc * Pe
k = HKDF(bk, "New DPP Protocol Key", S.x)
Auth-I' = HMAC (k, E-nonce | Pc.x | Pe .-X)

where bk is the base key generated in section 6.3. . The underlying hash function used with both HKDF and HMAC shall
be the one used to generate bk in the DPP Authentication protocol and Reconfiguration Authentication protocol. If Auth-I
differs from Auth-I', the Configurator shall terminate the DPP Configuration exchange. Otherwise, it generates (a) DPP
Configuration object(s) containing the Enrollee’s new protocol key and replies indicating success.

If the Configurator is provisioning for an 802.1X/EAP network using certificates to authenticate and the configRequest did
not contain a Certification Request, the Configurator responds with a DPP Configuration Response frame with the DPP
Status field set to STATUS_CSR_NEEDED and wrapped data consisting of the Enrollee's nonce and a base64-encoded
CSR Attributes Request attribute, encoded according to the ASN.1 type definition of “CsrAttrs” in section 4.5.2 of RFC
7030 [47], wrapped in ke:

Configurator — Enrollee: DPP Status, { E-nonce, CSR Attributes Request }ke

If the Configurator is provisioning for a network that requires 802.1X/EAP using certificate authentication and the
configRequest contains a Certification Signing Request, the Configurator validates the Certification Signing Request by
checking that the signature in the CSR is valid and that the challengePassword string in the CSR is correct (see below). If
the CSR is invalid, the Configurator shall respond with a DPP Configuration Response frame with DPP Status field set to
STATUS_CSR_BAD with the Enrollee's nonce wrapped in ke. It shall then terminate DPP. If the CSR is valid, the
Configurator forwards the Certification Signing Request on to the CA/RA for certification and responds with a DPP
Configuration Response frame with the GAS Comeback Delay set to how long the Enrollee should wait.

The Configurator will respond to subsequent DPP Configuration Request frames (using a GAS Comeback Request frame)
with a DPP Configuration Response frame (using a GAS Comeback Response frame) with a GAS Comeback Delay set to
how long the Enrollee should wait. When a certificate is received, the Configurator shall place the CA's signature

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 91 of 188

Wi-Fi Easy Connect™ Specification v3.0

certificate in the CA Certificate parameter and the Enrollee's certificate, and any intermediate certificates, in the Certificate
Bag parameter in the configurationPayload. The next time the Enrollee sends a GAS Comeback Request frame, the full
response is sent.

For an example of the enterprise configuration message flow, see Appendix A.1 Using DPP to Configure Enterprise
Credentials.

Then, the Configurator uses the attributes supplied by the Enrollee to construct a confirmation message consisting of
configurationPayload and the received E-nonce. This message is wrapped with ke. A Configurator may request the
Enrollee to report its connection status after it receives configuration by including a zero length sendConnStatus TLV in
the DPP Configuration Response frame. The ciphertext output by AES-SIV is then, together with a DPP Status field set to
STATUS_OK, copied into a DPP Configuration Response frame and sent to the Enrollee.

Configurator — Enrollee: DPP Status, { E-nonce, configurationPayload [, sendConnStatus]}ke

In case the netRole parameter in the DPP Configuration request had value "ap" or "sta", the configurationPayload shall
consist of one or more DPP Configuration objects (see section 4.5) as separate attributes. When the Enrollee has not
indicated support for protocol version number 2 or higher, no more than one DPP Configuration object shall be included.

In case the netRole parameter in the DPP Configuration request had value "configurator", the configurationPayload shall
consist of one instance of DPPEnvelopedData (see section 9.3).

NOTE: The contents of configurationPayload for other netRoles may be defined in other technical specifications.
6.4.3.2 Enrollee Handling

Upon successful receipt of the DPP Configuration Response frame, the Enrollee unwraps the received ciphertext with ke.
If AES-SIV returns FAIL or the configuration cannot be validated, the Enrollee may resend a DPP Configuration Request
or it may unsuccessfully terminate configuration. Otherwise, if the received DPP Status field value is not STATUS_OK,
STATUS_CONFIGURE_PENDING, STATUS_NEW_KEY_NEEDED, or STATUS_CSR_NEEDED, or the received E-
nonce differs from the one sent to the Configurator, the Enrollee may resend a DPP Configuration Request frame or it
may unsuccessfully terminate configuration.

An Enrollee receiving a DPP Configuration Response frame with DPP Status field value set to
STATUS_CONFIGURE_PENDING should start sending DPP Presence Announcement or DPP Reconfiguration
Announcement messages again. The Configurator should not start a DPP exchange with this Enrollee again before it is
able to configure it successfully. If the received DPP Status field value is STATUS_NEW_KEY_NEEDED, the Enrollee
shall extract the Finite Cyclic Group and the Responder Public Key from the DPP Configuration Response frame. It shall
check that the received public key, Pc, is a valid point on the curve indicate by the Finite Cyclic Group. It shall then
generate a new keypair, pe/Pe, in that curve and compute the following:

S= Pe * Pe
k = HKDF(bk, "New DPP Protocol Key", S.x)
Auth-1 = HMAC(k, E-nonce | Pc.X | Pe. X)

where bk is the base key generated in section 6.3. The underlying hash function used with both HKDF and HMAC shall be
the one used to generate bk in the DPP Authentication protocol and Reconfiguration Authentication .The Enrollee shall
then construct a DPP Configuration Request frame with the same E-nonce, its new public protocol key Pe, the POP tag
Auth-1, and the original Configuration Request object.

Enrollee — Configurator: { E-nonce, Pe, Auth-I, configRequest }ke. If the received DPP Status is
STATUS_CSR_NEEDED, the Enrollee shall decode and parse the CSR Attributes Request from the DPP Config
Response frame.

If the CSR Attributes Request contains a hash algorithm that differs from the one used in DPP Authentication (see Table
4), the CSR shall be generated using that hash algorithm. If the CSR Attributes Request contains an OID indicating an RSA
key or an OID indicating an elliptic curve other than the curve used to generate the protocol key, then a new keypair shall
be generated according to the cryptosystem specified in the CSR Attributes Request. Otherwise, the protocol key should
be used to generate the CSR using the hash algorithm from Table 4. An Enrollee may generate another key for the CSR if
the protocol key was created with restrictions that prohibit signature usage.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 92 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

The challengePassword OID (1.2.840.113549.1.9.7) shall be included in the CSR regardless of whether it is in the CSR
Attributes Request. For proper encoding, the value passed in the CSR as challengePassword shall be a UTF-8 encoding
of the base64 encoding of the following 64-octet string cp, with no additional whitespace:

cp = HKDF-Expand(bk, "CSR challengePassword", 64)
Additional attributes requested should be included in the CSR, to the fullest extent by the Enrollee.

The Enrollee shall send a DPP Configuration Request frame with the same E-nonce, and a new Configuration Request
object to the Configurator. The Configuration Request object contains the CSR encoded in the CertificateRequest
parameter. If it receives a response including a non-zero GAS Comeback Delay, it sends the GAS Comeback Request
frame when the timer expires.

If the received DPP Status field value is STATUS_OK, then for each received configurationObject with AKM parameter
value containing "dpp" or a DPP AKM suite selector, the Enrollee verifies that the netAccessKey in the Connector is either
the same as the protocol key it used in the preceding DPP Authentication exchange or the new protocol key Pe if it
generated a new one on request. For each received configurationObject with AKM parameter value containing "dot1x",
the Enrollee verifies that the subjectPublicKeyInfo of the received certificate is the same as the key used when generating
the CSR. If not, the Enrollee unsuccessfully terminates configuration. Otherwise, it provisions the network(s) with the
received DPP Configuration object(s), stores the Configurator identity and signature key, populates its cache of
Connectors or other network credentials, and, optionally, appends the indicated configurators onto the appropriate linked
lists. The received configuration applies to all radios of the device (for example, a dual-band dual-concurrent AP as the
Enrollee uses the received Connector on all radios operating the provisioned network).

6.4.4 DPP Configuration Result

When both the Enrollee and the Configurator indicate their protocol version numbers to be 2 or higher, the Enrollee
reports the result of configuration processing to the Configurator to allow clear indication of the results on the
Configurator's user interface. The result is indicated in the DPP Configuration Result frame sent on the same channel
immediately after the final DPP Configuration Response frame. The DPP Status field value indicates the result of the
configuration: STATUS_OK indicates success and STATUS_ CONFIG_REJECTED indicates failure.

Enrollee — Configurator: { DPP Status, E-nonce }«e

6.4.5 DPP Connection Status Result
6.4.5.1 Overview

When both an Enrollee and a Configurator indicate their protocol version numbers to be 2 or higher, the Configurator may
request the Enrollee to provide feedback on an attempt to use the configuration applied in a Configuration Object received
from a successful DPP Configuration protocol exchange. This protocol shall only be used with an Enrollee STA.

A Configurator optionally includes a sendConnStatus attribute in a DPP Configuration Response frame as described in
6.4.3.

An Enrollee that received a DPP Configuration Response frame that included a sendConnStatus attribute shall process
the response as described in 6.4.3 and transmit the Configuration Result frame as described in 6.4.4.

After successfully receiving the DPP Configuration Result frame from the Enrollee, the Configurator remains on the
channel listening to receive a DPP Connection Status Result frame from the Enrollee.

If the configuration is applied successfully, the Enrollee shall use the configuration information to discover and associate
to an AP. Immediately after reaching any status indicated in Table 22, or at most after 15 seconds, the Enrollee shall
return to the channel used for Configuration and transmit a DPP Connection Status Result frame indicating the status for
the connection attempt.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 93 of 188

Wi-Fi Easy Connect™ Specification v3.0

Telianc”

The DPP Connection Status Result frame shall contain the E-Nonce used for the DPP configuration protocol exchange
and a connectionStatus object wrapped with ke.

Enrollee — Configurator: { E-nonce, DPP Connection Status }«e
6.4.5.2 DPP Connection Status Object

The DPP connectionStatus object is a JSON-encoded object which provides information on an Enrollee connection
attempt after DPP configuration is applied.

Table 22. DPP Connection Status Object

Parameter Name Type Value Scope Description
(see Section 1.4)
DPP Connection | connStatus = OBJECT

Status
result INTEGER STATUS_OK, M The result object indicates the DPP Status
STATUS AUTH FAILURE value indicating the result of a connection
STATUS INVALID attempt after the configuration has been
CONNECTOR, applied.

STATUS_NO_MATCH,
STATUS_NO_AP

ssid64 STRING BASE64URL encoded C The SSID expressed as a string of octets.
string
channelList STRING channel-list2 C A string containing a list of operating

channels and operating classes indicating
the channels that the Enrollee scanned in
attempting to discover the AP. The list
conforms to the ABNF syntax described
below.

The result parameter is always present and indicates the status of the connection attempt. The permissible values for the
connection status are given in Table 23.

Table 23. DPP Status Values in a DPP Connection Status Object

Connection Attempt Result DPP Status

Enrollee successfully associated to the AP and has network access STATUS_OK

Enrollee discovered the AP and failed to connect to the network. STATUS_AUTH_FAILURE
Enrollee received an invalid Connector during network introduction. STATUS_INVALID_CONNECTOR

Received AP Connector is verified and valid but no matching Connector

could be found by Enrollee. STATUS_NO_MATCH

Enrollee failed to discover an access point. STATUS_NO_AP

The SSID is always present and indicates the SSID in the AP to which the Enrollee has attempted to discover and
connect.

The channelList parameter array is conditionally present when the DPP Connection Status Object is set to
STATUS_NO_AP and contains a list of channels that the Enrollee used to search for the AP. The channelList parameter
is encoded using the following ABNF:

channel-list2 = class-and-channels *(*“,” class-and-channels)
class-and-channels = class “/” channel *(*,” channel)

class = 1*3DICGIT

channel = 1*3DIGIT

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 94 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

An example of a DPP connectionStatus object where the SSID is "status_query_ssid" can be found in Figure 26.

{
"result": 11,
"ssid'": "status_query_ssid",
"channelList":"81/1,6,11,117/40,115/48"
}

Figure 26. Example DPP connectionStatus Object
6.5 DPP Reconfiguration Authentication Protocol

6.5.1 Overview

An Enrollee and Configurator shall support the DPP reconfiguration authentication protocol when the supported protocol is
2 or higher. The DPP reconfiguration message exchange is between an Enrollee and a known Configurator, i.e. the
Enrollee possesses the Configurator's public C-sign-key. Similar to DPP authentication, it consists of a 3-way message
exchange that involves mutual authentication and generates a shared secret and an authenticated key. The mutual
authentication is performed using the Configurator's Connector (C-Connector) that the Configurator issues itself and the
Enrollee's Connector (E-Connector) issued to the Enrollee during a previous configuration exchange.

When the Enrollee determines that reconfiguration is required, it transmits the Reconfiguration Announcement frame to
search for its Configurator. The Reconfiguration Announcement frame includes a hash of the Configurator's C-sign-key.
Once the Configurator receives the Reconfiguration Announcement frame from an Enrollee, the Configurator initiates the
reconfiguration authentication protocol with the Enrollee. The Reconfiguration Announcement frame also includes an
Enrollee identity E-id that is encrypted with the Configurator public signing key in a way that protects the privacy of the
Enrollee since the encrypted E'-id actually sent is different each time it is sent for the same E-id. Using this E-id, the
Configurator can prevent the loop that can occur when a Configurator has refused to reconfigure this particular Enrollee
before, e.g. because the user still has to solve a problem.

The Configurator sends a DPP Reconfiguration Authentication Request frame as a unicast frame to the Enrollee’'s MAC
address on the channel from which it received the Reconfiguration Announcement frame, and listens to receive a DPP
Reconfiguration Authentication Response frame from the Enrollee.

Upon successful validation of the DPP Reconfiguration Authentication Response frame, the Configurator transmits a DPP
Reconfiguration Authentication Confirm frame to the Enrollee to complete the authentication. Once DPP Reconfiguration
authentication completes successfully, the Enrollee and Configurator execute the DPP Configuration protocol to receive
updated configuration. If it did not complete successfully, the Enrollee may revert to transmitting Reconfiguration
Announcement frames

The Enrollee generates a new protocol key pair to be used during reconfiguration and uses its Connector keys to
authenticate itself to the Configurator. The Configurator issues itself a Connector that is signed by its own C-sign-key to
authenticate itself to the Enrollee. These keys are used to also generate the shared secret and the authenticated
encryption key (ke). The notation used for the DPP Reconfiguration Authentication exchanges follows the notation
described in Table 20 with the Connector key defined as (C, c¢). Protocol keys used by the Enrollee are ephemeral and
shall never be reused as a Protocol key.

All messages used in the DPP Reconfiguration protocol are 802.11 Public Action frames (see section 8) containing a
DPP-specific header and a series of attributes (see section 8.1). Attributes wrapped by AES-SIV are represented in DPP
protocol messages as a Wrapped Data attribute. The value of the Wrapped Data attribute shall be the ciphertext,
including the authenticating tag, output by AES-SIV. Unwrapping of AES-SIV-protected data results either in one or more
attributes or failure.

Invocations of AES-SIV in the DPP Reconfiguration protocol shall pass a vector of AAD having two components of AAD in
the following order: (1) the DPP header, as defined in Table 34, from the OUI field (inclusive) to the DPP Frame Type field
(inclusive); and (2) all octets in a DPP Public Action frame after the DPP Frame Type field up to and including the last
octet of the last attribute before the Wrapped Data attribute. The Wrapped Data attribute shall be the last attribute in a
DPP Public Action frame.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 95 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

6.5.2 DPP Reconfiguration Announcement

Before the first transmission of a DPP Reconfiguration Announcement frame, the Enrollee generates a random point E-id
on the curve of the Configurator signing key that serves to identify the Enrollee to the Configurator during reconfiguration.
The Enrollee may discard this E-id only after it has been successfully reconfigured.

Before every transmission of a DPP Reconfiguration Announcement frame, the Enrollee generates a random nonce a-
nonce, with 0 < a-nonce < q, where q is the order of the elliptic curve group of the Configurator signing key, and the
corresponding ECC point A-NONCE

A-NONCE = a-nonce * G
where G is the generator of the elliptic curve group of the Configurator signing key.

Furthermore, before every transmission of a DPP Reconfiguration Announcement frame, the Enrollee generates the ECC
point E'-id, the randomly encrypted E-id, as

E'-id = E-id + a-nonce * Ppk
where Ppk is shorthand for Privacy-protection-key, the Configurator public privacy protection key.

The Enrollee sends the DPP Reconfiguration Announcement frame in order to request reconfiguration. The Enrollee shall
include the base64url decoded value of the "kid" from the JWS Protected Header of its E-Connector, the finite cyclic group
of the Network Access key (netAccessKey) in its E-Connector and the elliptic points A-NONCE and E'-id. As specified in
Section 4.2.2, the base64url decoded value of the "kid" represents the hash of the Configurator's signing key (C-sign-key)
that was provided to the Enrollee during its previous configuration exchange.

NOTE: The curve of the Enrollee's netAccessKey can be different from the curve of the Configurator's signing key.
Enrollee -> Configurator: SHA-256(C-sign-key), group, A-NONCE, E'-id

Enrollees that send this message first derive a channel list for sending the DPP Reconfiguration Announcement frame

using the following steps:

1. Select preferred channels on which to send a DPP Presence Announcement frame to the broadcast address. For
interoperability purposes, the preferred channel shall be one from each of the following channels:

= 2.4 GHz: Channel 6 (2.437 GHz)

= 5 GHz: Channel 44 (5.220 GHz) if local regulations permit operation only in the 5.150 — 5.250 GHz band and
Channel 149 (5.745 GHz) otherwise

= 60 GHz: Channel 2 (60.48 GHz)

= Sub-1 GHz: Channel 37 (920.5 MHz) if local regulations permit use of global operating class 68 (ITU Region
2, Australia, New Zealand, Singapore) otherwise Channel 1 (863.5 MHz) if local regulations permit use of
global operating class 66 (Europe)

Add the preferred channels to the channel list; then,

2. For each channel on which the Enrollee detects the SSID for which it is currently configured, add to the channel
list; then,

3. Scan all supported bands and add each channel on which an AP is advertising the Configurator Connectivity IE
(section 8.5.2) to the channel list; then,

4. Remove any duplicate channels.

Once the channel list has been derived based on the steps above, the Enrollee selects a channel from the channel list,
sends a DPP Reconfiguration Announcement frame and waits for two seconds for a DPP Reconfiguration Authentication
Request frame. If a valid DPP Reconfiguration Authentication Request frame is not received, it repeats this procedure for
the next channel in the channel list. When all channels have been exhausted, it pauses for at least 30 seconds before
repeating the announcement procedure.

If the Enrollee cycles through the DPP Reconfiguration Announcement procedure two times without receipt of a valid DPP
Reconfiguration Authentication Request frame, it shall regenerate the channel list using the steps above and resume the
Reconfiguration Announcement procedure.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 96 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

6.5.3 DPP Reconfiguration Authentication Request

From the received A-NONCE and E'-id, the Configurator computes
E-id = E-id - ppk * A-NONCE
where ppk is shorthand for privacy-protection-key, the Configurator private privacy protection key.
The fact that E'-id - ppk * A-NONCE yields E-id is because
E'-id - ppk * A-NONCE = E'-id - ppk * a-nonce * G = E'-id - a-nonce * ppk * G = E'-id - a-nonce * Ppk = E-id

The Configurator determines from E-id if it already has serviced a DPP Reconfiguration Announcement frame from this
Enrollee and had to postpone that reconfiguration process, e.g., in case the user first had to solve a problem preventing a
successful connection of the Enrollee to the network. If that is still the case, the Configurator silently discards this DPP
Reconfiguration Announcement frame. Else, the Configurator continues with the DPP Reconfiguration protocol.

The Configurator generates a random nonce C-nonce whose length is determined based on the received group attribute
and Table 3.

The Configurator issues itself a Connector, called C-Connector, that includes an netAccessKey on the curve indicated by
the received group attribute and that is signed with the signing key that corresponds to the received SHA-256 (C-sign-
key). The version in the C-Connector shall be set to the highest version that the Configurator supports.

The Configurator shall include a single octet transaction identifier Transld, a Protocol Version attribute containing the
same number as the version member in the C-Connector, the generated C-Connector and the generated C-nonce to
generated the DPP Reconfiguration Authentication Request frame and send this frame to the Enrollee.

Configurator -> Enrollee: Transld, Protocol Version, C-Connector, C-nonce

The Configurator sends this frame as a unicast frame to the MAC address and channel on which it received the DPP
Reconfiguration Announcement. Upon sending the frame, it sets a timer for five seconds to wait for the DPP
Reconfiguration Authentication Response frame.

6.5.4 DPP Reconfiguration Authentication Response

When the Enrollee receives a DPP Reconfiguration Authentication Request frame, it verifies that the protocol version is 2
or higher and equal to the one in the version member of the C-Connector and that the Configurator's Connector is signed
with the C-sign-key whose hash was indicated in the Reconfiguration Announcement, and that signature is valid. If these
conditions are met, it verifies that the netRole field of the Configurator's Connector includes the configurator role as per
Table 5.

If the Enrollee successfully verifies both the C-Connector and the netRole, it generates a protocol keypair (Pr, pr) on the
same curve as the netAccessKey in its E-Connector, generates a random nonce (E-nonce), performs a Diffie-Hellman
computation to generate a shared secret M using the public netAccessKey from the Configurator's Connector (C)) with the
private key corresponding to netAccessKey (see Section 4.2.1) from its own E-Connector (cr of Connector that was
provided to it during a previous configuration/reconfiguration exchange) plus the protocol private key (pr).

M={cr+pr}*Ci
ke = HKDF(C-nonce | E-nonce, "dpp reconfig key", M.x)

The Enrollee populates the Connection Status object as per Section 6.4.5.2, and uses the reconfiguration encryption key
ke to generate an encrypted payload (wrapped data) that includes the C-nonce from the DPP Reconfiguration
Authentication Request frame and the Connection Status object. It then populates the DPP Reconfiguration
Authentication Response frame with the transaction ID from the DPP Reconfiguration Authentication Request frame, the
Protocol Version attribute with the protocol version number, which set to its protocol version, if the DPP Reconfiguration
Authentication Request frame indicated version 3 or newer; or otherwise set to protocol version value 2 ,its own E-
Connector whose private key cr is used above in the computation of M and ke, its own E-nonce, the protocol public key
(Pr) encoded as specified in Section 3.3.1, and the encrypted payload. It then sends it to the Configurator.

Enrollee -> Configurator: Transld, Protocol Version, E-Connector, E-nonce, Pr, {C-nonce, Connection Status}ke
© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 97 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

The Enrollee sends this frame as a unicast to the MAC address and channel on which it received the DPP
Reconfiguration Authentication Request frame. Upon sending the frame, it shall set a timer for five seconds to wait for a
DPP Reconfiguration Authentication Confirm frame.

6.5.5 DPP Reconfiguration Authentication Confirm

Upon receiving the DPP Reconfiguration Authentication Response frame, the Configurator first verifies that the
transaction ID matches the session's DPP Reconfiguration Authentication Request frame. It verifies that the protocol
version is 2 or higher It also verifies that the E-Connector is valid.

It then uses the Enrollee's public netAccessKey from the E-Connector (Cr) and the public protocol key (Pr) and performs
a Diffie-Hellman computation using the private key associated with the netAccessKey (ci) in its own C-Connector it sent in
the DPP Reconfiguration Authentication Request frame to compute the shared secret M and the reconfiguration key ke. It
uses the derived ke and attempts to decrypt the encrypted object. If the Configurator successfully decrypts the payload, it
verifies that the C-nonce in it matches the value sent in the DPP Reconfiguration Authentication Request frame. If the
value matches, the Configurator can use the information in the Connection Status object to set the values in the Reconfig-
Flags attribute. It also saves the Enrollee's nonce.

M=c*{Cr+Pr}
ke = HKDF(C-nonce | E-nonce, "dpp reconfig key", M.x)

The Configurator shall set the value of DPP Status field to STATUS_OK when all of the above checks passes
successfully and when the Configurator is able to proceed immediately with the DPP Configuration protocol.

The Configurator shall set the value of DPP Status field to STATUS_AUTH_FAILURE if one or more of the above checks
did not pass successfully.

The Configurator then generates an encrypted payload that includes the DPP Status field, the transaction identifier, its
own C-nonce, the Enrollee's E-nonce received in the DPP Reconfiguration Authentication Response frame and the
Reconfig-Flags attribute. It then sends a DPP Reconfiguration Authentication Confirm frame that includes the original
transaction ID and the protocol version number of the Enrollee from the DPP Reconfiguration Authentication Response
frame, which shall be 2 or higher.

Configurator -> Enrollee: DPP Status, {Transld, Protocol Version, C-nonce, E-nonce, Reconfig-Flags}ke
The Configurator sets a timer for 2 seconds and waits for the Enrollee to start the DPP Configuration.

Upon receipt of the DPP Reconfiguration Authentication Confirm frame, the Enrollee attempts to decrypt the encrypted
payload. If it successfully decrypts the payload, it verifies the transaction ID is correct, the protocol version number
matches what it sent in the DPP Reconfiguration Authentication Response frame and that both the nonces are correct. If
the received DPP Status field value is any other than STATUS_OK, the Enrollee may revert to transmitting DPP
Reconfiguration Announcement frames. If the received DPP Status field value is any other than STATUS_OK, it then uses
the Reconfig-Flags attribute to set values in the DPP Configuration Request Object. The Reconfig-Flags attribute is used
by the Enrollee to set appropriate attributes in the Configuration Request object and to process the Configuration Object.
See Section 8.1.1.22 for details.

6.5.6 Connector Matching for Reconfiguration

The trust in the reconfiguration exchange is based on authenticating the Peer using Connectors. For reconfiguration, a
Configurator issues itself a Connector with a netRole of "configurator” that is sent to an Enrollee seeking reconfiguration.
An Enrollee uses a Connector provided to it during its last configuration exchange. Table 24 below shows the netRoles
that are compatible for reconfiguration.

Table 24. netRole Compatibility for Reconfiguration

netRole of Matching groupld in Received Connector netRole of Device's Matching Connector groupld Compatibility
configurator sta, ap Compatible
sta, ap configurator Compatible

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 98 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

6.6 Network Introduction

6.6.1 Introduction

A provisioned Enrollee is able to communicate to select Peers on the network controlled by the Configurator by engaging
in Network Introduction. There are two protocols for Network Introduction, the Network Introduction Protocol, and the
Private Introduction Protocol, with the difference being the latter provides privacy.

In infrastructure networks, the STA discovers the AP that advertises the DPP AKM suite selector in Beacon and Probe
Response frames. A STA then can decide to expose its identity in the Network Introduction Protocol or hide its identity
using the Private Introduction Protocol. In either case, an AP is required to expose its identity. Discovery of peers in other
networks may require exposure of identity and preclude privacy protection.

6.6.2 Network Introduction Protocol

If STA does not require privacy, it can issue a the DPP Peer Discovery Request frame shall be sent as a unicast frame on
the operating channel of the recipient. Alternately, the device can discover Peers on the network by broadcasting DPP
Peer Discovery Request frames containing a single octet transaction identifier and its Connectorgs. The transaction
identifier is a one octet value uniquely identifying a pending transaction. The Protocol Version attribute is conditionally
included when the protocol version is 2 or greater. If the version member is present in ConnectorB, device B shall set the
value of the Protocol Version attribute to the value of the version member in ConnectorB.

device B — device A: Transaction ID, Connectors, [Protocol Version]
A device A that receives a DPP Peer Discovery Request frame from a device B shall decode and check the Connector.
If device A finds any problem in the received Connector, for example:

A syntax error in the received Connector such as a misspelled field name

A wrong or missing value in the received Connector such as a missing kid field, erroneous NAK expiry value
An expired NAK in the Connector

A failing signature verification if device A possesses the matching C-sign-key

it sends a DPP Peer Discovery Response frame with DPP Status field set to STATUS_INVALID_CONNECTOR and the
received Transaction ID:

device A — device B: Transaction ID, DPP Status

If device A did not find any problem in the received Connector, and does not possess the matching C-sign-key for checking
its signature, it sends a DPP Peer Discovery Response frame with DPP Status field set to STATUS_NO_MATCH and the
received Transaction ID:

device A — device B: Transaction ID, DPP Status

If device A finds the incoming Connector fully correct and has verified that its signature is correct, meaning device A
possesses the matching C-sign-key, device A tries to find a matching Connector by extracting device B’s netAccessKey,
PK, and checks whether it is permitted by a Configurator to establish a link to device B, with a Connector containing a
matched groupld, see section 6.6.5.

If device A has not been permitted to establish a link to this device, or if device B’s netAccessKey, PK, in all matching
Connectors has expired, or if the version member in ConnectorB has value 3 or higher and the Protocol Version field is not
present or has a different value than the one in the version member in ConnectorB,it sends a DPP Peer Discovery Response
frame with DPP Status field set to STATUS_NO_MATCH and the received Transaction ID:

device A — device B: Transaction ID, DPP Status

If the recipient is permitted to speak to the Peer, it performs key establishment per section 6.6.4.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 99 of 188

Wi-Fi Easy Connect™ Specification v3.0

ol
Device A then shall respond with a DPP Peer Discovery Response frame with DPP Status field set to DPP_STATUS_OK,
the transaction identifier copied from the DPP Peer Discovery Request frame, and a matching connector, Connectora. The
Protocol Version attribute is conditionally included when the protocol version is 2 or greater.

device A — device B: Transaction ID, DPP Status, Connectora, [Protocol Version]

Device B shall drop a received DPP Peer Discovery Response frame with an unknown Transaction ID. Transaction ID is
used by device B to match its pending request and netAccessKey.

Device B shall check the Connectora from device A in the same way as described above for device A. If device B has not
been permitted to establish a link to device A, it shall drop the DPP Peer Discovery Response frame. If device B verifies
that it is permitted to establish a link to device A, device B performs key establishment per section 6.6.4.

NOTE: Sending a DPP Peer Discovery Response frame with DPP Status set to STATUS _INVALID_CONNECTOR
means that there is a configuration problem in device A and sending a DPP Peer Discovery Response frame with DPP
Status field set to STATUS_NO_MATCH means that there is a configuration problem in device B.

6.6.3 Private Introduction Protocol

When a DPP client operating in an infrastructure network desires privacy in its connection to the AP it can perform the
Private Introduction Protocol. This allows for the device's connector to be encrypted at the expense of the AP's connector
being passed in the clear. The Private Introduction Protocol begins when a device issues a Private Peer Introduction
message. This can be sent unicast to the AP on the operating channel of the AP, or it can be broadcast in an attempt to
discover APs on the device's current channel. The Private Peer Introduction Message contains a one-octet transaction
identifier which is used to uniquely identify the pending transaction, and a one-octet protocol version number indicating the
largest supported DPP version of the device.

device B - device A: transaction id, protocol versionb

A device A that receives a Private Peer Introduction message and wishes to complete the Private Introduction Protocol
will respond with a Private Peer Introduction Notify message consisting of the transaction identifier from the received
Notify, the largest supported DPP version, and device A's connector. If device A does not wish to engage in the Private
Introduction protocol it merely ignores the Notify.

device A - device B: transaction id, protocol versiona, connectorA

Device B matches the transaction id in the Notify to ensure it is in response to a pending discovery attempt. It then
validates the received connector using the same techniques from 6.6.2. If device B finds any problem with the received
connector it abandons the Private Introduction Protocol. If the connector is valid, device B performs key establishment
according to 6.6.4. It proceeds with the Private Introduction Protocol according to the protocol requirements of the
minimum of protocol versiona and protocol versionb. Device B then performs a single-shot HPKE wrapping using the base
encryption mode to the public key extracted from connectorA(hpke-puba), according to [54], of the protocol version it sent
in the discovery message and connectorb. Version 3 of DPP constructs AAD for HPKE as a concatenation of the DPP
header, as defined in Table 34, from the OUI field (inclusive) to the DPP Frame Type field (inclusive) and the transaction
id. Note: Different versions of DPP may construct AAD differently. An invocation of HPKE in base encryption mode returns
two data: a serialized public key (enc) and a ciphertext (ct). Device B then constructs a Private Peer Introduction Update
consisting of the transaction id and the output of HPKE , enc followed by ct, in a wrapped data attribute. It sends this
message to device A:

device B = device A: transaction id, { protocol versionb, connectorb}hpke-puba

At this stage, device B has finished the Private Introduction protocol but device A has not. It is recommended that device
B briefly pause before proceeding with network access per 6.6.6..

For version 3 of DPP, the parameters used with HPKE are indicated in Table 25. Subsequent versions may use different
parameters.

Table 25. HPKE Parameters

Curve KEM KDF AEAD
NIST p256 16 (DHKEM p256) 1 (KDF-SHA-256) 1 (AES-128-GCM)

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 100 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Curve KEM KDF AEAD

NIST p384 17 (DHKEM p384) 2 (KDF-SHA384) 2 (AES-256-GCM)
NIST p521 18 (DHKEM p521) 3 (KDF-SHA-512) 2 (AES-256-GCM)
Brainpool p256* 16 (DHKEM p256) 1 (KDF-SHA-256SHA-256) 1 (AES-128-GCM)
Brainpool p384* 17 (DHKEM p384) 2 (KDF-SHA384) 2 (AES-256-GCM)
Brainpool p512* 18 (DHKEM p521) 3 (KDF-SHA-512) 2 (AES-256-GCM)

Upon receipt of the Private Peer Introduction Update message, device A matches the transaction id to a pending protocol
exchange , parses the wrapped data extracting enc and ct, and uses them along with the private analog to the public key
it sent to device B in the Private Peer Introduction Notify for this transaction to perform an HPKE unwrapping using the
base encryption mode to its public key. If unwrapping fails, device A abandons the protocol. If unwrapping is successful,
device A validates connectorb using the same techniques from 6.6.2. If the connector is validated, device A performs key
establishment according to 6.6.4. The Private Introduction Protocol terminates successfully.

NOTE: The DHKEM values from RFC 9180 are not defined for use with Brainpool curves. Since the AP will know the
curve of its public key, it can safely reuse the p256 and p384 DHKEM values when the Brainpool curves of identical length
are used. The DHKEM p521 value when used with Brainpool p512 has an Nenc of 129, Npk of 129, and an Nsk of 64
which differs from the p521 values in table 2 of [54].

6.6.4 Key Establishment in Network Introduction

After exchanging connectors, each peer derives a shared secret N, using the private analog to its netAccesskey, nk, and
the Peer’s public network access provisioning key PK derived from the peer's Connector, a PMK, and a PMKID using
both the device's and the peer's public keys, NK and PK ,respectively:

N = nk * PK
PMK = HKDF(<>, “DPP PMK”, N.x)
PMKID = Truncate-128(SHA-256(min(NK.x, PK.x) | max(NK.x, PK.x)))

Upon generation of the PMK and PMKID, N shall be irretrievably deleted.

6.6.5 Connector Group Comparison

A Connector received by a Peer device may contain multiple group attributes. The Peer device evaluates these attributes
to determine whether it shall initiate a connection to the device that owns the received Connector.

When group attributes are contained in the Connector, the Peer device compares the received groupld(s) to a list of its
Connector groupld(s). If a groupld matches, the device evaluates the netRole in the same group attribute to confirm that
the netRole is compatible with its netRole for the matching group attribute as specified in Table 26 for the wi-fi_tech=infra
case. Other specifications may define different netRole compatibility rules for other wi-fi_tech values. If there is no groupld
match or the netRole is not compatible, the device does not have a group attribute match.

If no group attribute match has been found, the device shall not initiate a connection to the device that owns the received
Connector; however, a Peer Discovery Response shall be sent with the DPP Status error code STATUS_NO_MATCH for
DPP_STATUS, in case the Connector is received in a Peer Discovery Request.

Table 26. netRole Compatibility for Network Introduction

netRole of Matching groupld in Received Connector netRole of Device's Matching Connector groupld Compatibility
ap ap Incompatible
ap sta Compatible
sta ap Compatible
sta sta Incompatible

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 101 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

6.6.6 Network Access Protocols

The two Peers shall establish a secure association using procedures defined in [1]. The Peers shall use the AKM defined
in section 8.4.2 with the Network Introduction Protocol to derive the PMK, and should indicate the corresponding PMKID
in the Association Request frame.

When the Peers support protocol version 2 or higher and PFS is desired for a secure association, the STA and AP shall
generate ephemeral Diffie-Hellman key pairs and shall include a Diffie-Hellman Parameter element containing Ds for the
STA and Da for the AP in the (Re)Association Request and (Re)Association Response frames, respectively, and shall
perform an ephemeral Diffie-Hellman to produce a shared secret, Z;

Z = ds * Da; as computed by the STA
=da * Ds; as computed by the AP

The group used to generate the ephemeral Diffie-Hellman public keys shall be the same as that used in the Connectors
exchanged in the Network Introduction Protocol. The x-coordinate of the resulting secret, here denoted Z.x, shall be used
in the PTK key derivation from [1] as follows:

PTK = PRF-Length(PMK, “Pairwise Key Expansion”, Min(AA, SPA) || Max(AA, SPA) ||
Min(ANonce,SNonce) || Max(ANonce,SNonce) || Z.x)

If a STA includes a Diffie-Hellman Parameter element, the AP should, barring any configuration prohibiting it, gratuitously
support PFS and respond with one. If the STA did not include a Diffie-Hellman Parameter element in its (Re)Association
Request frame and the AP’s configured policy requires PFS, or if the STA did include a Diffie-Hellman parameter and the
AP is configured with policy to prohibit PFS, the AP shall reject association with a status code of 12 from [1],
DENIED_OTHER_REASON. Barring any policy prohibiting it, a STA should attempt association again in a manner that
complies with the AP’s policy. The secret Z and both Diffie-Hellman key pairs shall be deleted upon completion of the 4-
way handshake. No PMKSA nor PMKID shall be created as a result of this ephemeral Diffie-Hellman exchange.

If a STA tries to negotiate PFS for an association with an AP that does not support protocol version 2, the AP will not
include Diffie-Hellman Parameter element in the (Re)Association Response frame. Such an AP might also reject the

association with status code 43 (STATUS_INVALID_AKMP). Barring any policy prohibiting it, the STA should attempt
association again without including the Diffie-Hellman Parameter element in (Re)Association Request frame.

Both the STA and AP that support protocol version 2 or higher indicate their protocol version and support for PFS during
the 4-way handshake to protect PFS negotiation against downgrade attacks. The STA includes the DPP KDE in EAPOL-
Key msg 2/4 and the AP includes the DPP KDE in EAPOL-Key msg 3/4. If the AP has PFS support enabled and it
receives a valid EAPOL-Key msg 2/4 indicating that the STA supports PFS (DPP KDE is included and the Flags BO is 1)
during an association that did not negotiate use of PFS, the AP shall terminate the 4-way handshake and deauthenticate
the STA. If the STA has PFS support enabled and it receives a valid EAPOL-Key msg 3/4 indicating that the AP supports
PFS (DPP KDE is included and the Flags BO is 1) during an association that did not negotiate use of PFS, the STA shall
terminate the 4-way handshake and deauthenticate.

Table 27. DPP KDE Format

Field Size (Octets) Value (Hex) Description

Type 1 0xDD IEEE 802.11 KDE type

Length 1 6 Length of the following fields in the KDE in octets.

oul 3 0x50-6F-9A Wi-Fi Alliance specific OUI (refer to sub-clause 9.4.1.32 of [2])
Data Type 1 0x21 Identifying the type and version of the DPP KDE

Protocol Version 1 Variable Protocol Version from Table 31

Flags 1 Variable Bit field indicating PFS requirements.

BO: 0 = PFS not allowed, 1 = PFS allowed
B1: 0 = PFS not required, 1 = PFS required
B2..B7: Reserved

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 102 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

7 State Machines

7.1 Initiator State Machine

DPP capable devices maintain a parent process that is capable of creating multiple instances of the DPP Initiator state
machine. The parent process that creates instances of the Initiator state machine, identified by a tuple of a hash of the
initiator’s bootstrapping key and a hash of the responder’s bootstrapping key, delivers DPP frames to Initiator state
machine instances, passes state machine events to individual instances of the state machine, and transmits DPP frames
that are output by the state machine instances.

7.1.1 States

The states of each Initiator instance are:

Nothing—the initial state of an Initiator protocol instance
Bootstrapped—a Peer’s public key has been obtained and trusted
Authenticating—the Initiator is trying to authenticate the Peer
Authenticated—the Initiator has authenticated the Peer

7.1.2 Events and Output

State machine instances receive events. Received events advance the state machine and optionally produce output.
The events received by an Initiator instance are:

e Bootstrapping—one of the bootstrapping techniques has been accomplished and trust in a Peer’s public key has
been obtained
e Trigger—start the authentication and configuration process

Events generated by an Initiator instance are:

e NoPeer—discovery of the Peer has been abandoned
e BadAuth—the Peer could not be authenticated or provisioned

The outputs an Initiator state machine produces are:

e ““—the NULL response, no response at all
e AuthReg—a DPP Authentication Request frame
e AuthConf—a DPP Authentication Confirm frame

7.1.3 Variables

Each instance of the Initiator uses variables to facilitate running the state machine. These are:

e t—atimer that counts down a certain number of seconds and whose expiry can be detected by the state machine
e Sent—a counter to indicate how many times a frame has been sent in one state

7.1.4 Parent Process Behavior

The parent process creates Initiator instances to manage the authentication and configuration process for an individual
Peer. It passes frames received by the Peer or external inputs such as a reading a QR code, from a Ul indicating a
desired action.

7.1.5 State Machine Behavior

The parent process creates an Initiator instance with the state set to Nothing. The variables Sent is set to zero, and t is
created.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 103 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

The Initiator state machine is graphically illustrated in Figure 27.

failed bootstrapping/-

bootstrapping/-

Bootstrapped

NoPeer/-
trigger/DPP Authentication Request BadAuth/-
DPP Auth. Resp.-non_comp_roles/

. o DDP Auth. Conf.-STATUS_NOT_COMPATIBLE
timeout/DPP Authentication Request

DPP Authentication Response-

Authenticating
STATUS_RESPONSE_PENDING/-

DPP Authentication Response-STATUS_OK/
DDP Authentication Confirm-STATUS_OK

Authenticated

Figure 27. Initiator State Machine
7.151 Nothing State

All events in the Nothing state are ignored by the Initiator except bootstrapping. The parent process sends a bootstrapping
event to a state machine instance upon completion of one of the bootstrapping techniques. Upon receiving a
bootstrapping event the state machine advances to the Bootstrapped state; it produces no output. A byproduct of
bootstrapping is a Peer’s trusted public key.

7.15.2 Bootstrapped State

In the Bootstrapped state, the Initiator ignores all events except trigger. The parent process sends a trigger event when it
wants the Initiator’'s state machine to proceed with authentication of a bootstrapped Peer, for exampleQR code is read.
Upon receipt of a trigger event, t is set to 10 seconds, Sent is set to one, a DPP Authentication Request frame is sent to
the Peer identified by the bootstrapped public key, and the state machine transitions to the Authenticating state. A failed
bootstrapping attempt will bring the state machine back to the Nothing state.

7.15.3 Authenticating State

In the Authenticating state, the Initiator receives DPP Authentication Response frames and timer events. All other events
are ignored.

If a DPP Authentication Response frame is received and is well-formed, has DPP Status field set to STATUS_OK and if
the Responder's Capability pairs correctly to that of the Initiator, then t is cancelled and reset to 10 seconds, Sent is set to

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 104 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

one, a DPP Authentication Confirm frame with DPP Status field set to STATUS_OK is sent to the Peer, and the state
machine transitions to the Authenticated state.

If a DPP Authentication Response frame is received and is well-formed, has DPP Status field set to STATUS_OK and if
the Responder's Capability is the same as that of the Initiator, then t is cancelled, Sent is set to zero, a DPP
Authentication Confirm frame with DPP Status field set to STATUS_NOT_COMPATIBLE is sent to the Responder, and
the state machine transitions to the Bootstrapped state.

If a DPP Authentication Response frame is received and is well-formed and has DPP Status field set to
STATUS RESPONSE_PENDING, tis cancelled and reset to 120 seconds and Sent is set to six.

If a DPP Authentication Response frame is received that is malformed, t is cancelled, Sent is set to 0, a BadAuth event is
generated, and the state machine transitions to the Bootstrapped state.

If t expires and an ACK frame was received for the previously transmitted DPP Authentication Request frame, a NoPeer
event is generated and the state machine transitions to the Bootstrapped state. Otherwise, if t expires, the state machine
checks the value of Sent. If Sent is five or less Sent is incremented, then t is set to 10 seconds, the DPP Authentication
Request frame is resent, and the state machine remains in the Authenticating state. If Sent is greater than five, Sent is set
to zero, a NoPeer event is generated, and the state machine transitions to the Bootstrapped state.

7.15.4 Authenticated

The Authenticated state is the terminal state for an Initiator instance. If the Initiator is a Configurator, the state machine
sets timer t to 10 seconds and awaits the start of provisioning (see section 7.3); otherwise it remains in the Authenticated
state awaiting a trigger event to begin the provisioning process (see section 7.4).

7.2 Responder State Machine

DPP capable devices maintain a parent process that is capable of creating instances of the Responder state machine.

The parent process creates instances of the Responder state machine identified by a tuple of a hash of the initiator's
bootstrapping key and a hash of the responder’s bootstrapping key, delivers DPP frames to the Responder state machine
instances, sends state machine events to individual instances of the state machine, and transmits DPP frames that are
output by state machine instances.

7.2.1 States

The states of each Responder instance are:

e Bootstrap Key Acquiring—the state machine is in the process of acquiring the bootstrapping key from the Initiator
through user interaction
Awaiting—a quiescent state
Authenticating—the state machine is in the process of authenticating an Initiator

e Authenticated— the state machine has finished normally

7.2.2 Events and Output

The Responder state machine receives authentication requests, authentication confirmations and timer events.
Events generated by a Responder protocol instance are:

e BadAuth—the Initiator could not be authenticated or configuration failed

The outputs a Responder state machine produces are:

e ““—the NULL response, no response at all
e AuthResp—a DPP Authentication Response frame

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 105 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

7.2.3 Variables

Each protocol instance of the Responder state machine uses variables to facilitate its operation. These are:

e t—atimer that counts down a certain number of seconds and whose expiry is detected by the state machine
e Sent—a counter to indicate how many times a frame has been sent in one state

7.2.4 State Machine Behavior

A Responder instance is created in the Awaiting state. Sent is set to zero, and t is created.

The Responder state machine is graphically illustrated in Figure 28.

/—\
DPP Authentication Request/

DPP Authentication Response-
STATUS_RESPONSE_PENDING

Acquiring
Bootstrapping Key

Bootstrapping key captured/
DPP Authentication Response-STATUS_OK

DPP Authentication Request-mutual_auth/
DPP Authentication Response-STATUS_RESPONSE_PENDING

DPP Authentication Request-non_comp_roles/

DPP Authentication Response- BadAuth/-
STATUS_NOT_COMPATIBLE DDP Authentication Confirm

_/ -STATUS_AUTH_FAILURE
DPP Authentication Request/ -STATUS_NOT_COMPATIBLE/-

DPP Authentication Response-STATUS_OK

Awaiting

timeout/DPP Authentication Response Authenticating

DDP Authentication Confirm-STATUS_OK/-

Authenticated

Figure 28. Responder State Machine
7.2.4.1 Awaiting State

This is a quiescent state in which the Responder awaits contact by an Initiator. DPP Authentication Request frames are
received in the Awaiting state. All other events are ignored.

Malformed DPP Authentication Request frames are ignored. Well-formed DPP Authentication Request frames result in
the generation of data necessary to engage in the DPP Authentication protocol.

If a DPP Authentication Request frame is received that is well-formed and if the Initiator's Capability is the same as that of
the Responder, a DPP Authentication Response frame with DPP Status field set to STATUS _NOT_COMPATIBLE is sent
to the Peer that sent the Request and the state machine remains in the Awaiting state.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 106 of 188

Wi-Fi Easy Connect™ Specification v3.0

The following holds for a Responder that does not have to do mutual authentication or that has to do mutual
Authentication and has already obtained the Initiator's Bootstrapping key. If a DPP Authentication Request frame is
received that is well-formed and if the Initiator's Capability is complementary to that of the Responder, then a DPP
Authentication Response frame with DPP Status field set to STATUS_OK is sent to the Peer that sent the Request, Sent
is set to one, tis set to 10 seconds, and the state machine transitions to the Authenticating state.

The following holds for a Responder that has to do mutual authentication and that has not yet obtained the Initiator's
Bootstrapping key. If a DPP Authentication Request frame is received that is well-formed and if the Initiator's Capability is
complementary to that of the Responder, then a DPP Authentication Response frame with DPP Status field set to
STATUS_RESPONSE_PENDING is sent to the Peer that sent the Request, and the state machine transitions to the
Bootstrap Key Acquiring state.

7.2.4.2 Bootstrap Key Acquiring State

In the Bootstrap Key Acquiring state, the state machine receives DPP Authentication Request frames and bootstrap key
acquired events.

The user is instructed to acquire the bootstrapping key of the Initiator, for example, scan its QR code.

If the bootstrapping key of the Initiator is acquired successfully and if it is well-formed, then a DPP Authentication
Response frame with DPP Status field set to STATUS_OK is sent to the Peer that sent the Request, Sent is set to one, t
is set to 10 seconds, and the state machine transitions to the Authenticating state.

If a DPP Authentication Request frame is received from the same Initiator from which the Responder is acquiring the
bootstrapping key and if that message is well-formed and if the Initiator's Capability is complementary to that of the
Responder, then a DPP Authentication Response frame with DPP Status field set to STATUS _RESPONSE_PENDING is
sent to the Peer that sent the Request, and the state machine remains in the Bootstrap Key Acquiring state.

If a DPP Authentication Request frame is received from the same Initiator from which the Responder is acquiring the
bootstrapping key and if that message is well-formed and if the Initiator's Capability is the same as that of the Responder,
then a DPP Authentication Response frame with DPP Status field set to STATUS_NOT_COMPATIBLE is sent to the Peer
that sent the Request and the state machine transitions to the Awaiting state.

DPP Authentication Request frames from other Initiators are ignored.
7.2.4.3 Authenticating State

In the Authenticating state, the state machine receives DPP Authentication Confirm frames and timer events.

If a DPP Authentication Confirm frame is received and it is well-formed and has DPP Status field set to STATUS_OK,
then t is cancelled and the state machine transitions to the Authenticated state.

If a DPP Authentication Confirm frame is received and it is well-formed and has DPP Status field set to
STATUS_AUTH_FAILURE or STATUS_NOT_COMPATIBLE, then t is cancelled and the state machine transitions to the
Awaiting state.

If a DPP Authentication Confirm frame is received and it is malformed, then t is cancelled, Sent is set to zero, a BadAuth
event is generated and the Responder transitions to the Awaiting state.

If t expires and an ACK frame was received for the previously transmitted DPP Authentication Response frame, a
BadAuth event is generated and the state machine transitions to the Awaiting state. Otherwise, if t expires, the value of
Sent is checked. If Sent is five or less, then Sent is incremented, t is set to 10 seconds, the DPP Authentication Response
frame is sent, and the Responder remains in the Authenticating state. If Sent is greater than five, a BadAuth event is
generated and the state machine transitions to the Awaiting state.

If any other frame other than a DPP Authentication Confirm frame is received, the frame shall be dropped and the
Responder remains in the Authenticating state.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 107 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

7.2.4.4 Authenticated State

If the Responder is a Configurator, the state machine sets timer t to 10 seconds and awaits the start of provisioning (see
section 7.3), otherwise it remains in the Authenticated state awaiting a trigger event to begin the provisioning process (see
section 7.4).

7.3 Configurator State Machine

When a device is acting in the role of Configurator, the parent process creates a Configurator State machine following the
successful completion of an Initiator or Responder state machine. The former state machines successfully end in the
Authenticated state and it is from this state that the Configurator State machine begins.

The parent process delivers DPP frames to the Configurator state machine, sends it events, and processes configuration
responses to send DPP frames to Peers engaged in the DPP protocol.

7.3.1 States

The states of each Configurator instance are:

e Authenticated—the initial state of a Configurator protocol instance
e Finished—the state machine successfully terminated
e Terminated—a failure state indicating unsuccessful provisioning of an authenticated Peer

7.3.2 Events and Output

The Configurator's state machine begins in an authenticated state and waits for the Enrollee to request its configuration.
Events generated by a Configurator are:

e NoPeer—provisioning has been abandoned because the Enrollee has gone away

The outputs a Configurator state machine produces are:

e ““—the NULL response, no response at all
e ConfResp—a DPP Configuration Response

7.3.3 Variables
Each Configurator state machine uses the following variables:

e t—atimer that counts down a certain number of seconds and whose expiry is detected by the state machine
7.3.4 Parent Process Behavior

The parent process creates Configurator instances to manage provisioning a Peer after successful authentication. It
passes frames received by the Peer to the Configurator state machine.

7.3.5 State Machine Behavior

The parent process creates a Configurator with its initial state set to Authenticated. Timer t is created and set to 10
seconds.

The Configurator state machine is graphically illustrated in Figure 29.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 108 of 188

S

Wi-Fi Easy Connect™ Specification v3.0

H

Authenticated

DPP Configuration Request-accepted/
DPP Configuration Response-STATUS_OK
NoPeer/-
aes-siv fails/-
DPP Configuration Request-refused/
DPP Configuration Response-
STATUS_CONFIGURE_FAILURE

Terminated

Figure 29. Configurator State Machine
7.35.1 Authenticated State

If t expires, then a NoPeer event is generated and the Configurator transitions to the Terminated state.

If a DPP Configuration Request is received for which AES-SIV decryption fails, or which contains the wrong value of E-
nonce, then the state machine transitions to the Terminated state.

If a correct DPP Configuration Request frame is received and the Configurator wants to grant the request, then a DPP
Configuration Response frame with DPP Status field set to STATUS_OK is generated and the state machine transitions to
the Finished state.

If a correct DPP Configuration Request frame is received and the Configurator does not want to grant the request, then a
DPP Configuration Response frame with DPP Status field set to STATUS CONFIGURE_FAILURE is generated and the
state machine transitions to the Terminated state.

If any other frame other than a DPP Configuration Request frame is received or the DPP Configuration Request frame is
malformed, the frame shall be dropped and the state machine remains in the Authenticated state.

7.3.5.2 Finished State

This represents a successful terminus for the state machine. An indication of success may be generated by the
Configurator. The parent process may perform any housekeeping at this point.

7.3.5.3 Terminated State

This represents an unsuccessful terminus for the state machine. The parent process may perform any housekeeping at
this point.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 109 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

7.4 Enrollee State Machine

When a device is acting as an Enrollee, the parent process creates an Enrollee State machine following the successful
completion of an Initiator or Responder state machine.

The parent process delivers DPP frames to the Enrollee, sends it events, and sends DPP frames from the Enrollee to its
Peers engaged in the DPP protocol.

7.4.1 States

The states of each Enrollee instance are:

Authenticated—the state machine is starting the process of provisioning
Provisioning—the state machine is in the process of being provisioned by a Configurator
Provisioned—the state machine has finished normally

Terminated—the state machine has finished abnormally or has been terminated

7.4.2 Events and Output

The events received by an Enrollee are:

e Trigger—start the provisioning process
Events generated by the Enrollee are:

o NoPeer—the authenticated Configurator failed to provision the Enrollee
The outputs an Enrollee produces are:

. —the NULL response, no response at all
e ConfReg—a DPP Authentication Configuration request

7.4.3 Variables

Each protocol instance of the Enrollee state machine uses the following variables:

e t—atimer that counts down a certain number of seconds and whose expiry is detected by the state machine
e Sent—a counter to indicate how many times a frame has been sent in one state

7.4.4 State Machine Behavior

An Enrollee state machine is created in the Authenticated state. Sent is set to zero, and t is created. The Enrollee state
machine is graphically illustrated in Figure 30.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 110 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Authenticated
DPP Configuration Response-

not STATUS_OK/-

trigger/DPP Configuration Request

timeout/DPP Configuration Request Provisioning

DPP Configuration Response-STATUS_OK/-

NoPeer/-
Provisioned DPP Configuration Response-
not STATUS_OK/-
Terminated

Figure 30. Enrollee State Machine

7.4.4.1 Authenticated State

In the Authenticated state, the Enrollee ignores all events except a trigger. The parent process sends a trigger event when
it wants the state machine to proceed with provisioning. Upon receipt of a trigger, t is set to 10 seconds, Sent is set to
one, a DPP Configuration Request is sent to the Peer and the state machine transitions to the Provisioning state.

7.4.4.2 Provisioning State

In the Provisioning state, the Enrollee receives DPP Configuration Response frames and timer events. All other events
are ignored.

If a DPP Configuration Response frame is received and is well-formed, has DPP Status field set to STATUS_OK, has the
correct E-nonce and the signature verification was successful, then t is cancelled and the state machine transitions to
Provisioned.

If any other DPP Configuration Response frame than the one described in the line above is received, then t is cancelled
and the state machine transitions to Authenticated or to the Terminated state (implementers option).

If t expires and an ACK frame was received for the previously transmitted DPP Configuration Request frame, the Enrollee
generates a NoPeer event and transitions to the Terminated state. Otherwise, if t expires, the state machine checks the

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 111 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

value of Sent. If Sent is five or less, then Sent is incremented, t is set to 10 seconds, the DPP Configuration Request
frame is resent, and the state machine remains in the Provisioning state. If Sent is greater than five, the Enrollee
generates a NoPeer event and transitions to the Terminated state.

If any other frame other than a DPP Configuration Response is received, the frame shall be dropped and the Enrollee
remains in the Provisioning state.

7.4.4.3 Provisioned State

This state indicates a successful terminus for the state machine. An indication of success may be generated by the
Enrollee. The parent process may perform any housekeeping at this point.

7.4.4.4 Terminated State

This state indicates an unsuccessful terminus for the state machine. An indication of failure may be generated by the
Enrollee. The parent process may perform any housekeeping at this point.

7.5 Detailed Protocol Description

When a device is set-up as a Configurator, it generates the key pair (c-sign-key, C-sign-key), to sign and verify
Connectors, respectively. Using the same curve as the c-sign-key, it generates the key pair (privacy-protection-key,
Privacy-protection-key), to decrypt and encrypt E-ids, respectively, during reconfiguration.

An Initiator starts in the Nothing state. When the Responder begins, it starts in the Awaiting state.

Either a Configurator or an Enrollee can initiate DPP bootstrapping or an authentication exchange. The other device will
respond. In other words, it becomes the Responder.

7.5.1 DPP Bootstrapping

The Initiator bootstraps the Responder to obtain the Responder’s bootstrap key (Br). Optionally the Responder bootstraps
the Initiator. The bootstrapping methods are described in section 5.

The Initiator transits from the Nothing state to the Bootstrapped state. The Responder state machine remains in the
Awaiting state.

7.5.2 DPP Authentication Exchange

A DPP Authentication exchange takes place between an Authenticating Initiator and an Awaiting Responder. Note that
only one main flow is described here and that section 6.3.2 and section 6.3.3 specify several alternative flows that depend
on the capabilities of Initiator and Responder being non-complementary, or the Responder still having to acquire the
bootstrapping key of the Initiator.

The Initiator first prepares the following elements (see section 6.3.2):

1. Sets I-capabilities to indicate whether it is a Configurator or Enrollee.

2. Generates an Initiator protocol key pair - (Pi/p1)), which is either the network access key (netAccessKey) when
the Initiator is an Enrollee or an ephemeral key when it is a Configurator.

3. Computes k1 using the Responder’s bootstrapping key (Br) and the Initiator’s private protocol key (pi).
4. Generates I-nonce.

The Initiator then transmits an Authentication Request frame to the Responder. The frame includes (see section 6.3.2):
1. A hash of the Responder’s bootstrapping key (BRr).

A hash of the Initiator’'s bootstrapping key (B).

The Initiator’s public protocol key (P)).

L

I-nonce concatenated with I-capabilities and wrapped with AES-SIV, using k1 and the AAD.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 112 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Upon receipt of an Authentication Request frame, the Responder (see section 6.3.3):

1.
2.
3.

Transits from the Awaiting state to the Authenticating state.

Computes k1 using the Initiator's public key and the Responder’s private bootstrapping key.

Unwraps the I-nonce and the I-capabilities with AES-SIV, using k1 and the AAD.

a. If AES-SIV fails, the Responder aborts the exchange.

b. If the Responder cannot negotiate its capabilities, given I-capabilities, it also aborts the exchange.

c. Ineither case, the Responder transits from the Authenticating state back to the Awaiting state.

The Responder then prepares the following data (see section 6.3.3):

1.

o g A~ w

Sets R-capabilities to indicate that it is either the Enrollee or the Configurator, whichever is opposite of the role the
Initiator declared.

Generates the Responder’s protocol key pair (Pr/pr), which is either the network access key (netAccessKey)
when the Responder is an Enrollee or an ephemeral key when it is a Configurator.

Generates R-nonce.
Generates N, and k2.
Derives ke from N, M, and optionally L, and I-nonce concatenated with R-nonce.

Generates R-auth, the Responder’s authentication tag, which is a hash of I-nonce concatenated with R-nonce,
concatenated with the Initiator’s public key x-coordinate (Pi.x), concatenated with the Responder public key x-
coordinate (Pr.x), (optionally concatenated with the Initiator’'s bootstrapping key x-coordinate (Bi.x), when
performing mutual authentication,) concatenated with the Responder’s public bootstrapping key x-coordinate
(Br.X), concatenated with 0xO.

The Responder then sends an Authentication Response frame to the Initiator. The frame includes (see section 6.3.3):

o > 0N

The hash of the Responder’s public bootstrap key (BRr).

Optionally includes the hash of the Initiator’s public bootstrap key (Bi).
The Responder public protocol key (Pr).

R-auth wrapped with ke using AES-SIV.

R-nonce concatenated with I-nonce, concatenated with R-capabilities, concatenated with the wrapped R-auth is
all wrapped with AES-SIV, using k2 and AAD.

Upon receiving the Responder’s Authentication Response frame, the Initiator performs the following actions:

1.

2.

Unwraps the I-nonce, R-nonce, R-capabilities and R-auth wrapped with AES-SIV, using ke, with AES-SIV, using
k2 and the AAD.

If AES-SIV fails, the Initiator aborts the exchange and transitions from the Authenticating state to the
Bootstrapped state, otherwise it:

a. Computes ke, and

b. Unwraps R-auth with AES-SIV, using ke.
If AES-SIV fails, the Initiator aborts the exchange and transitions from the Authenticating state to the
Bootstrapped state.

Verifies the Responder’s authentication tag (see section 6.3.4):

a. Generate a verification token R-auth’, which is a hash of I-nonce concatenated with R-nonce, concatenated
with the Initiator’s public protocol key x-coordinate (Pi.x), concatenated with the Responder’s public protocol
key x-coordinate (Pr.x), (optionally concatenated with the Initiator's bootstrapping key x-coordinate (B:.x),
when performing mutual authentication) concatenated with the Responder public bootstrapping key x-
coordinate(Br.x), concatenated with 0x0.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 113 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

b. Verifies R-auth=R-auth’.

c. If verification fails, the Initiator aborts the exchange and transitions from the Authenticating state to the
Bootstrapped state.

3. Generates l-auth (see section 6.3.4), the Initiator’s authentication token, which is a hash of R-nonce concatenated
with I-nonce, concatenated with the Responder’s public protocol key x-coordinate (Pr.x), concatenated with the
Initiator’s public protocol key x-coordinate (Pr.x), concatenated with the Responder public bootstrapping key x-
coordinate (Br.x), (optionally concatenated with the Initiator’s bootstrapping key x-coordinate (Bi.x), when
performing mutual authentication) concatenated with 0x1.

4. Responds with an Authentication Confirm frame to the Responder. The frame includes (see section 6.3.4):
a. The hash of the Responder’s public bootstrapping key (Br).
b. Optionally includes the hash of the Initiator's bootstrapping key (Bi), when performing mutual authentication.
c. l-auth wrapped with AES-SIV, using ke and AAD.

5. The Initiator transitions from the Authenticating state to the Authenticated state.

Upon receipt of an Authentication Confirm frame the Responder performs the following actions:

1. Unwraps l-auth with AES-SIV, using ke and AAD.

If AES-SIV fails, the Responder aborts the exchange. The Responder then transitions from the Authenticating state to the
Awaiting state.

2. If the previous step succeeds, the Responder verifies the Initiator’s authentication tag (see section 6.3.4):

a. Computes I-auth’, which is R-nonce concatenated with I-nonce, concatenated with the Responder’s public
protocol key x-coordinate (Pr.x), concatenated with the Initiator’s public protocol key x-coordinate (P1.x),
concatenated with the Responder’s public bootstrapping key x-coordinate (Br.x), (optionally concatenated
with the Initiator’s bootstrapping key x-coordinate (Bi.x) when performing mutual authentication),
concatenated with Ox1.

b. Verifies that I-auth=I-auth’:
If verification fails, the Responder aborts the exchange. The Responder transitions from the Authenticating
state to the Awaiting state. If verification succeeds, the Responder transitions from the Authenticating state to
the Authenticated state.

At this time, the Initiator and Responder are authenticated. Their roles are set accordingly to their negotiated capabilities
as Configurator and Enrollee.

7.5.3 DPP Configuration Exchange
A DPP configuration frame exchange takes place between an Enrollee and its Configurator. Both Enrollee and
Configurator begin in the Authenticated state. The following actions take place.

The Enrollee prepares a Configuration-Request frame and sends it to the Configurator:

1. The Enrollee transmits a Configuration Request frame to the Configurator. The frame includes a series of
attributes wrapped with AES-SIV, using ke and AAD.

2. The Enrollee transitions from the Authenticated state to the Provisioning state.
Upon receipt of the Configuration Request frame and if the Configurator grants the request:
1. The Configurator generates Connectors for the Enrollee. For each Connector, the Configurator:
a. Uses the same c-sign-key/C-sign-key key pair and derived key identifier kid that identifies the network.

b. Assigns the Peer device or group-id to identify the device group with which the Enrollee can connect. The
group-id may be a wildcard.

c. Includes the Enrollee’s public key, which identifies the Enrollee.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 114 of 188

S

Wi-Fi Easy Connect™ Specification v3.0

H

d. Creates a label uniquely identifying the Configurator.

e. Assigns the role of the Enrollee in the connection.

f. Computes a digital signature of the fields above with ECDSA using the signing key c-sign-key.
2. The Configurator generates additional configuration for the Enrollee (see sections 4.3 and 4.5).

3. The Configurator transmits a Configuration Response frame to the Enrollee with DPP Status field set to
STATUS_OK. The frame is wrapped with AES-SIV, using ke and AAD, and includes the Enrollee's E-nonce and
the DPP Configuration object(s) (see sections 4.3 and 4.5).

4. The Configurator transitions from the Authenticated state to the Finished state.

Upon receipt of the Configuration Request frame and if the Configurator refuses to grant the request,

1. The configurator transmits a configuration-response frame to the Enrollee with DPP Status field set to
STATUS_CONFIGURE_FAILURE. The frame is wrapped with AES-SIV, using ke and AAD, and includes the
Enrollee's E-nonce (see section 6.4.3).

2. The Configurator transitions from the Authenticated state to the Terminated state.
Upon receipt of the configuration-response frame with STATUS_OK, the Enrollee performs the following actions:
1. Unwraps the frame with AES-SIV using ke and AAD:
a. If AES-SIV fails, the Enrollee may resend the Configuration Request frame.
b. Otherwise, the Enrollee transitions from the Provisioning state to the Authenticated state.
Stores the DPP Configuration object(s).
Populates its cache of Connectors, which forms the list of its Peers.

4. Transitions from the Provisioning state to the Provisioned state.

7.5.4 DPP Network Introduction Exchange

This frame exchange is between the newly configured device and the other Peers in the network.

1. The new Peer sends out DPP Peer Discovery Request frames, which advertise its Connector.
2. Upon receipt of a DPP Peer Discovery Request frame, any receiving Peer shall perform the following actions:
a. Decodes the Connector.

b. Validates the kid:
If verification fails, the receiving Peer drops the message.

c. Verifies whether the Connector is signed by the Configurator with ECDSA using C-sign-key:
If verification fails, the receiving Peer drops the message.

d. Validates the attributes by matching the attribute objects to ensure that the Peer is permitted to connect. If the
attributes are group attributes, the Peer evaluates each group attribute, matches the groupld with its list of
grouplds, and evaluates that the netRole associated with the groupld is complimentary to its netRole in the
Connector. If verification of the Connector fails, the receiving Peer drops the message.

e. Derives a PMK and PMKID by using its private key and the new Peer’s public key.

f. Responds with a DPP Peer Discovery Response frame. The message includes a hash of each public key and
its own Connector.

Upon receipt of a DPP Peer Discovery Response frame, the new Peer shall validate the Connector received in the DPP
Peer Discovery Response frame.

At this point, each Peer derives the PMK and PMKID using its private key and the other Peer’s public key from the
Connector.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 115 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

7.5.5 Network Access
1. One Peer (for example, a STA) includes the DPP network introduction AKM and the PMKID in the RSN element
of the Association Request frame.

2. The other Peer (for example, an AP) receives the Association Request frame and validates the RSN element and
responds with an Association Response frame.

Introduced Peers communicate securely with WPA2 or WPAS3 using the 4-way handshake.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 116 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

8 DPP Attribute, frame, and Element Formats

DPP messages are exchanged using 802.11 Public Action frames, with the exception of DPP Configuration
Request/Response frames, which include a similar header format, but are exchanged using vendor specific Generic
Advertisement Service (GAS) Public Action frames. The information element (IE) usage and convention for DPP
Configuration Request/Response frames is the same as all other DPP frames.

In addition to DPP Protocol framing, the specification introduces the Network Introduction protocol, where Peers use a
Connector to establish a security association. The Network Introduction protocol elements are given in section 8.3.4.

8.1 DPP Attributes

The DPP attributes are defined to have a common general format consisting of a 2 octet DPP Attribute ID field, a 2-octet
Length field and variable-length attribute-specific information fields, as shown in Table 28. Both fields are encoded in little
endian byte order.

Table 28. General Format of DPP Attribute

Field Size (octets) Value (Hexadecimal) Description

Attribute ID 2 variable Identifying the type of DPP attribute. The specific values are defined in Table 29.
Length 2 variable Length of the following fields in the attribute.

Attribute Body Field = variable Attribute-specific information fields.

Table 29. Attribute ID Assignments

Attribute ID

(Hexadecimal) Notes

0000 — OFFF Reserved

1000 DPP Status

1001 Initiator Bootstrapping Key Hash

1002 Responder Bootstrapping Key Hash

1003 Initiator Protocol Key

1004 Wrapped Data

1005 Initiator Nonce

1006 Initiator Capabilities

1007 Responder Nonce

1008 Responder Capabilities

1009 Responder Protocol Key

100A Initiator Authenticating Tag

100B Responder Authenticating Tag

100C DPP Configuration Object, see section 4.5
100D DPP Connector, see Figure 15 for an example
100E DPP Configuration Request object, see Section 4.4
100F Bootstrapping Key

1010-1011 Reserved

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 117 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Attribute ID

(Hexadecimal) Notes

1012 Finite Cyclic Group
1013 Encrypted Key

1014 Enrollee Nonce

1015 Code Identifier

1016 Transaction 1D

1017 Bootstrapping Info
1018 Channel

1019 Protocol Version
101A DPPEnvelopedData
101B sendConnStatus
101C connStatus

101D Reconfiguration Flags
101E C-sign-key Hash
101F CSR Attributes Request
1020 A-NONCE

1021 E'-id

1022 Configurator Nonce
1023 - FFFF Reserved

A DPP Device that encounters an unknown or reserved Attribute ID value in a DPP frame received without error shall
ignore the DPP attribute and its associated fields, and parse any remaining fields for additional DPP attributes with
recognizable Attribute ID values. A DPP Device that encounters a recognizable but unexpected Attribute ID value in the
received DPP IE may ignore that DPP attribute.

8.1.1 DPP Attribute Body Field Definitions

8.11.1 DPP Status Attribute

The DPP Status attribute body field is a single octet carrying a value from Table 63.

8.1.1.2 Initiator Bootstrapping Key Hash Attribute and Responder Bootstrapping Key Hash Attribute

The Initiator Bootstrapping Key Hash attribute and Responder Bootstrapping Key Hash attribute body fields are defined in
section 6.3.2.

8.1.1.3 Initiator/Protocol Key and Responder Protocol Key Attributes
The Initiator Protocol Key and Responder Protocol Key attribute body fields are encoded as defined in section 3.2.
8.1.14 Wrapped Data Attribute

The Wrapped Data attribute body field is defined in sections 5.6.3, 6.3 and 6.4.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 118 of 188

Wi-Fi Easy Connect™ Specification v3.0 el
<«
8.1.15 Initiator Nonce, Responder Nonce, Configurator nonce, and Enrollee Nonce Attributes

The Initiator Nonce, Responder Nonce, Configurator Nonce and Enrollee Nonce attribute body fields are the I-nonce, R-
nonce, C-nonce and E-nonce, respectively. Length is determined according to section 3.3.

8.1.1.6 Initiator Capabilities Attribute and Responder Capabilities Attribute

The DPP authentication capabilities attribute body field is a single octet bitmask that indicates the role(s) of the device as
defined as shown in Figure 31. The settings for Enrollee BO and Configurator B1 are given in Table 30.

BO Bl B2 B7

Enrollee Configurator Reserved
Bits: 1 1 6

Figure 31.Initiator Capabilities Attribute and Responder Capabilities Attribute Format
Table 30. Enrollee and Configurator Bit Settings

Enrollee (BO) Configurator (B1) Description
0 0 Not allowed
0 1 Device is Configurator only
1 0 Device is Enrollee only
1 1 Device is an Enrollee and Configurator (only applicable for Iniitator Capabilities attribute)

8.1.1.7 Initiator Authenticating Tag attribute and Responder Authenticating Tag Attribute

The Initiator Authenticating Tag attribute body field is defined in section 6.3.4. The Responder Authenticating Tag attribute
body field is defined in section 6.3.3.

8.1.1.8 DPP Configuration Object Attribute

The DPP Configuration Object attribute body field is defined in section 4.5.

8.1.1.9 DPP Connector Attribute

The DPP Connector attribute body field is defined in section 4.3.5.1

8.1.1.10 DPP Configuration Request Object Attribute

The DPP Configuration Request Object attribute body field is defined in section 4.4.
8.1.1.11 Bootstrapping Key Attribute

The Bootstrapping Key attribute body field is defined in section 5.6.3.

8.1.1.12 Finite Cyclic Group Attribute

The Finite Cyclic Group attribute body field is a two-octet integer in little endian byte order.
8.1.1.13 Encrypted Key Attribute

The Encrypted Key attribute body field is defined in sections 8.2.7 and 8.2.8.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 119 of 188

S

Wi-Fi Easy Connect™ Specification v3.0

H

8.1.1.14 Code Identifier Attribute
The Code Identifier attribute body field is defined in section 5.6.2.
8.1.1.15 Transaction ID Attribute

The Transaction ID attribute body field is a one octet integer identifying a pending Peer Discovery request or an in-
progress DPP Reconfiguration exchange.

8.1.1.16 Bootstrapping Info Attribute
The Bootstrapping Info attribute body field is the pkex-bootstrap-info defined in section 5.6.3.
8.1.1.17 Channel Attribute

The Channel attribute body field contains two one-octet integer fields: IEEE 802.11 global operating class and channel
fields (see Annex E of [1]) value pair as shown in Figure 32.

Octets: 1 1

Operating Class Channel

Figure 32.Channel Attribute Fields
8.1.1.18 Protocol Version Attribute

The Protocol Version attribute body field contains an one-octet integer fields indicating the highest protocol version that
the device transmitting the frame supports. If this attribute is not present in a frame that is defined to include this
conditional attribute, the transmitting device is assumed to support only the protocol version 1.

Table 31. Protocol Version Assignments

Protocol Version 3;E:RI Defining DPP Technical Specification Version
0 0 reserved

1 1 1.0

2 2 2.0

3 3 3.0

4-255 4-9, A-Z reserved

8.1.1.19 DPPEnvelopedData Attribute

The DPPEnvelopedData attribute body field contains the DER-encoded ASN.1 DPPEnvelopedData as specified in section
9.3.

8.1.1.20 sendConnStatus Attribute

The sendConnStatus attribute consists of an Attribute ID field set to the value indicated in Table 29, and a Length field set
to 0.

8.1.1.21 DPP Connection Status Object Attribute

The DPP Connection Status Object attribute body field is defined in section 6.4.5.2.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 120 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

8.1.1.22 Reconfiguration Flags Attribute

The Reconfiguration Flags attribute body field allows a Configurator to inform an Enrollee on how to process DPP
Configuration objects (see Section 4.3) during the reconfiguration exchange. It consists of a single octet bitmask as shown
in Table 32. The settings for connectorKey are given in Table 33.

Table 32. Reconfiguration Flags Attribute Format

Table 32 BO B1 B7

connectorKey Reserved
Bits: 1 7
Table 33. connectorKey Values

Value Name Value Meaning

CONFIG_REUSEKEY 0 The enrollee shall retain and reuse the same public/private key associated with the Connector it
sent in the Reconfiguration Authentication Response frame

CONFIG_REPLACEKEY 1 The enrollee shall discard the original public/private key and instead the Connector shall use the
newly negotiated protocol key pair

8.1.1.23 A-NONCE Attribute
The A-NONCE attribute body field is an ECC point as defined in section 6.5.2.
8.1.1.24 E'-id Attribute

The E'-id attribute body field is an ECC point as defined in section 6.5.2.
8.2 DPP frames

8.2.1 DPP Public Action frames
8.2.1.1 General Format

The Public Action frame format (as defined in [1]) is used to define the DPP Public Action frames in this specification. The
general format of the DPP Public Action frames is shown in Table 34.

Table 34. General Format of DPP Public Action frame

Field Size (octets) Value (Hexadecimal) Description

Category 1 0x04 IEEE 802.11 Public Action frame usage.

Action 1 0x09 (IEEE 802.11) vendor specific usage

oul 3 50 6F 9A Wi-Fi Alliance specific OUI.

OUI Type 1 Ox1A Identifying the type or version of action frame. Setting to Ox1A indicates Wi-Fi
Alliance DPP

Crypto Suite 1 Indicates the crypto suite to use per section 3.3

DPP Frame Type 1 Identifying the type of DPP action frame. The specific value is defined in Table
35

Attributes variable A series of one or more DPP Attributes

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 121 of 188

Wi-Fi Easy Connect™ Specification v3.0

Type

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24— 255

8.2.2 Authentication Request frame

Table 35. DPP Public Action Frame Type

Notes

Authentication Request

Authentication Response
Authentication Confirm

Reserved

Reserved

Peer Discovery Request

Peer Discovery Response

PKEX Version 1 Exchange Request
PKEX Exchange Response

PKEX Commit-Reveal Request

PKEX Commit-Reveal Response
Configuration Result

Connection Status Result

Presence Announcement
Reconfiguration Announcement
Reconfiguration Authentication Request
Reconfiguration Authentication Response
Reconfiguration Authentication Confirm
PKEX Exchange Request

Push Button Presence Announcement

Push Button Presence Announcement Response

Private Peer Introduction Query
Private Peer Introduction Notify
Private Peer Introduction Update

Reserved

Telianc”

The Authentication Request frame uses the DPP Public Action frame format and is transmitted by a DPP Initiator to a

DPP Responder to initiate DPP authentication.

The Attributes in the Authentication Request frame are shown in Table 36.

Table 36. Attributes in the Authentication Request frame

Attribute Required (R) /
Optional (O) /
Conditional (C)

Responder Bootstrapping = R
Key Hash

Notes

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 122 of 188

Wi-Fi Easy Connect™ Specification v3.0

Attribute

Initiator Bootstrapping
Key Hash

Initiator Protocol Key
Protocol Version
Channel Attribute

Wrapped Data

Initiator Nonce

Initiator Capabilities

Required (R) /
Optional (O) /
Conditional (C)

Telianc”

Notes

Present when the DPP Initiator supports protocol version 2 or higher.

Ciphertext output of AES-SIV using intermediate key (k1) on Initiator nonce and Initiator
Capabilities with AAD per section 6.3.

This attribute is a component of the Wrapped Data

This attribute is a component of the Wrapped Data

8.2.3 Authentication Response frame

The Authentication Response frame uses the DPP Public Action frame format and is transmitted by a DPP Responder to
a DPP Initiator to initiate a DPP authentication in response to Authentication Request frame.

The attributes included in the Authentication Response frame are shown in Table 37.

Attribute

DPP Status

Responder
Bootstrapping Key Hash

Initiator Bootstrapping
Key Hash

Responder Protocol Key

Protocol Version

Primary Wrapped Data

Responder Nonce
Initiator Nonce
Responder Capabilities

Secondary Wrapped
Data

Responder
Authenticating Tag

Table 37. Attributes in the Authentication Response Frame

Required (R) /
Optional (O) /
Conditional (C)
R

C

O T T O

Notes

Error code

Present when DPP Status is STATUS_OK

In case DPP Status is STATUS_OK, only included for mutual authentication

Present when DPP Status is STATUS_OK

Present when the parameter is received in the Authentication Request Frame and the
DPP Responder supports protocol version 2 or higher.

Ciphertext output of AES-SIV using intermediate key k2 or k1 depending on whether DPP
Status is STATUS_OK or indicates an error, respectively, with AAD per section 6.3

This is a component of the Primary Wrapped Data when DPP Status is STATUS_OK
This is a component of the Primary Wrapped Data
This is a component of the Primary Wrapped Data

Ciphertext output of AES-SIV using key ke on the Responder Authenticating Tag. This is a
component of the Primary Wrapped Data when DPP Status is STATUS_OK, with AAD per
section 6.3.

This is a component of the Secondary Wrapped Data

8.2.4 Authentication Confirm frame

The Authentication Confirm frame uses the DPP Public Action frame format and is transmitted by a DPP Initiator to a DPP
Responder to confirm DPP authentication in response to an Authentication Response frame.

The attributes included in the Authentication Confirm frame are shown in Table 38.

© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 123 of 188

Wi-Fi Easy Connect™ Specification v3.0

Attribute

DPP Status

Responder
Bootstrapping Key Hash

Initiator Bootstrapping
Key Hash

Wrapped Data

Initiator Authenticating
Tag

Responder Nonce

Table 38. Attributes in the Authentication Confirm frame

Required (R) /
Optional (O) /
Conditional (C)
R

R

Notes

Error code

Only included for mutual authentication
Ciphertext output of AES-SIV using key ke or k2 depending on whether DPP Status is
STATUS_OK or indicates an error, respectively, with AAD per section 6.3.

This is a component of Wrapped Data when DPP Status is STATUS_OK

This is a component of Wrapped Data when DPP Status indicates an error

8.2.5 Peer Discovery Request frame

The Peer Discovery Request frame uses the DPP Public Action frame format and is transmitted by a DPP Device to

discover Peer devices.
The attributes included in the Peer Discovery Request frame are shown in Table 39.

Table 39. Attributes in the Peer Discovery Request frame

Attribute

Transaction ID
Connector

Protocol Version

Required (R) /
Optional (O) /
Conditional (C)
R

R
Cc

Notes

Unique one octet value identifying a pending request
JSON-encoded Connector, see section 4.5

Present when the peer sending this frame supports protocol version 2 or higher.

8.2.6 Peer Discovery Response frame

The Peer Discovery Response frame uses the DPP Public Action frame format and is transmitted by a DPP Device to
discover Peer devices in response to Peer Discovery Request frame.

The attributes included in the Peer Discovery Response frame are shown in Table 40.
Table 40. Attributes in the Peer Discovery Response frame

Attribute Required (R) / Notes
Optional (O) /
Conditional (C)

Transaction 1D R The number identifying the transaction, copied from the Peer Discovery Request
DPP Status R Error code

Connector C JSON-encoded Connector, see section 4.5

Protocol Version C Present when the peer sending this frame supports protocol version 2 or higher.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 124 of 188

Wi-Fi Easy Connect™ Specification v3.0 @

8.2.7 PKEX Exchange Request frame

The PKEX Exchange Request frame uses the DPP Public Action frame format and is transmitted by a DPP Device to
begin the PKEX protocaol.

The attributes included in the PKEX Exchange Request frame are shown in Table 41.

Table 41. Attributes in the PKEX Exchange Request frame

Attribute Required (R) / Notes

Optional (O) /

Conditional (C)
Protocol Version R The protocol version being used.
Finite Cyclic Group R The group from which the public key to exchange is drawn.
Code Identifier (@) An identifier of the code used for authentication, when used.
Encrypted Key R The encrypted ephemeral key of the Initiator.

8.2.8 PKEX Version 1 Exchange Request frame

The PKEX Version 1 Exchange Request frame uses the DPP Public Action frame format and is transmitted by a DPP
Device to begin version 1 of the PKEX protocol. This frame shall only be used with version 1 of PKEX.

The attributes included in the PKEX Version 1 Exchange Request frame are shown in Table 42.
Table 42. Attributes in the PKEX Version 1 Exchange Request frame

Attribute Required (R) / Notes

Optional (O) /
Conditional (C)

Finite Cyclic Group R The group from which the public key to exchange is drawn
Code Identifier (0] An identifier of the code used for authentication, when used
Encrypted Key R The encrypted ephemeral key of the Initiator

8.2.9 PKEX Exchange Response frame

The PKEX Exchange Response frame uses the DPP Public Action frame format and is transmitted by a DPP Device to
another DPP Device to respond to the initial message in the PKEX protocol.

The attributes included in the PKEX Exchange Response frame are shown in Table 43.

Table 43. Attributes in the PKEX Exchange Response frame

Attribute

DPP Status
Protocol Version

Code Identifier

Encrypted Key

Finite Cyclic Group

Required (R) /
Optional (O) /
Conditional (C)
R

C

(0]

Notes

Error code.
The protocol version being used. Present if version 2 or greater.

An identifier of the code used for authentication. Present if the Initiator included it in the
PKEX Exchange Request frame.

The encrypted ephemeral key of the Responder. Present if DPP Status is STATUS_OK.

An alternate, supported group, present if DPP Status is other than STATUS_OK

© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 125 of 188

Wi-Fi Easy Connect™ Specification v3.0 @

8.2.10 PKEX Commit-Reveal Request frame

The PKEX Commit-Reveal Request frame uses the DPP Public Action frame format and is transmitted by a DPP Device
to another DPP Device participating in the PKEX protocol.

The attributes included in the PKEX Commit-Reveal Request frame are shown in Table 44.
Table 44. Attributes in the PKEX Commit-Reveal Request frame

Attribute Required (R) / Notes
Optional (O) /
Conditional (C)

Wrapped Data R Ciphertext output of AES-SIV using key and AAD per section 5.6.1
Bootstrapping Key R The bootstrap key of the Initiator. This is a component of the Wrapped Data
Initiator Authenticating R The Initiator's commitment. This is a component of the Wrapped Data

Tag

Bootstrapping Info (0] Additional information formatted per section 5.2.1.

8.2.11 PKEX Commit-Reveal Response frame

The PKEX Commit-Reveal Response frame uses the DPP Public Action frame format and is transmitted by a DPP Device
to another DPP Device participating in the PKEX protocol.

The attributes included in the PKEX Commit-Reveal Response frame are shown in Table 45.
Table 45. Attributes in the PKEX Commit-Reveal Response frame

Attribute Required (R) / Notes
Optional (O) /
Conditional (C)

Wrapped Data R Ciphertext output of AES-SIV using key and AAD per section 5.6.1
Bootstrapping Key R The bootstrap key of the Responder. This is a component of the Wrapped Data
Responder R The Responder's commitment. This is a component of the Wrapped Data

Authenticating Tag

Bootstrapping Info (@) Additional information formatted per section 5.2.1.

8.2.12 Configuration Result frame

The Configuration Result frame uses the DPP Action frame format and is transmitted by a DPP Enrollee to DPP
Configurator to indicate result of DPP Configuration.

The Attributes in the Configuration Result frame are shown in Table 46.

Table 46. Attributes in the Configuration Result frame

Attribute R/O/IC Notes

Wrapped Data R Ciphertext output of AES-SIV using intermediate key (ke) on Enrollee Nonce with AAD per
Section 6.3.

DPP Status R Result of configuration; this attribute is a component of the wrapped data

Enrollee Nonce R This attribute is a component of the wrapped data

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 126 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

8.2.13 Connection Status Result frame

The Connection Status Result frame uses the DPP Action frame format and is transmitted by a DPP Enrollee to DPP
Configurator to indicate result of a connection attempt after applying a recently received configuration.

The Attributes in the Connection Status Result frame are shown in Table 47.

Table 47. Attributes in the Connection Status Result frame

Attribute R/O/C Notes

Wrapped Data R Ciphertext output of AES-SIV using intermediate key (ke) with AAD per 6.4.5.1.

Enrollee Nonce R This attribute is a component of Wrapped Data

DPP Connection Status R The JSON-encoded DPP Connection Status Object encoded is a component of wrapped
Object data.

8.2.14 Presence Announcement frame

The Presence Announcement frame uses the DPP Public Action frame format and is broadcast by an unmanaged DPP
device.

The Attribute in the Presence Announcement frame is shown in Table 48.
Table 48. Attributes in the Presence Announcement Request frame

Attribute R/O/IC Notes

Responder R The digest containing the sender's public bootstrapping key.
Bootstrapping Key Hash

8.2.15 Reconfiguration Announcement frame

The Reconfiguration Announcement frame uses the DPP Action frame format and is transmitted by a DPP Enrollee to
signal the DPP Configurator that it wishes to perform a reconfiguration exchange with the Configurator.

The Attributes in the Reconfiguration Announcement frame are shown in Table 49.
Table 49. Attributes in the Reconfiguration Announcement frame

Attribute Required (R) / Notes
Optional (O) /
Conditional (C)

Configurator C-sign-key R SHA-256 hash of the uncompressed form of the Configurator's public C-sign-key. This is

Hash the base64url decoded value of the "kid" from the JWS Protected Header of the Enrollee's
Connector.

Finite Cyclic Group R The group from which the Enrollee NAK is drawn

A-NONCE R The ECC point representing the a-nonce

E'-id R The ECC point representing the randomly encrypted E-id

8.2.16 Reconfiguration Authentication Request frame

The Reconfiguration Authentication Request frame uses the DPP Action frame format and is transmitted by a DPP
Configurator to the DPP Enrollee to initiate a reconfiguration authentication exchange.

The Attributes in the Reconfiguration Authentication Request frame are shown in Table 50.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 127 of 188

Wi-Fi Easy Connect™ Specification v3.0

Table 50. Attributes in the Reconfiguration Authentication Request frame

Attribute

Transaction ID
Protocol Version
Connector

Configurator Nonce

Required (R) /
Optional (O) /
Conditional (C)
R

R
R
R

Notes

Unigque one octet value identifying an in-progress exchange
Value 2 or above, indicates the supported DPP protocol version

JSON-encoded Connector, see section 4.2.2

8.2.17 Reconfiguration Authentication Response frame

The Reconfiguration Authentication Response frame uses the DPP Action frame format and is transmitted by a DPP
Enrollee to the DPP Configurator in response to a Reconfiguration Authentication Request frame.

The Attributes in the Reconfiguration Authentication Response frame are shown in Table 51.

Table 51. Attributes in the Reconfiguration Authentication Response frame

Attribute

Transaction ID

Protocol Version
Connector

Enrollee Nonce
Responder Protocol Key
Wrapped Data
Configurator Nonce

Connection Status

Required (R) /
Optional (O) /
Conditional (C)

l X X”® XV OV XV XV X

Notes

Unigque one octet value identifying an in-progress exchange
Value 2 or above, indicates the negotiated DPP protocol version

JSON-encoded Connector, see section 4.2.2

Protocol key encoded as per section 3.3.1
Ciphertext output of AES-SIV using reconfiguration key ke as per 6.5.4
This attribute is a component of the Wrapped Data

JSON-encoded object, see section 6.4.5.2. This attribute is a component of the Wrapped
Data

8.2.18 Reconfiguration Authentication Confirm frame

The Reconfiguration Authentication Confirm frame uses the DPP Action frame format and is transmitted by a DPP
Configurator to the DPP Enrollee to complete the reconfiguration authentication exchange

The Attributes in the Reconfiguration Authentication Confirm frame are shown in Table 521.

Table 52. Attributes in the Reconfiguration Authentication Confirm frame

Attribute

DPP Status
Wrapped Data

Transaction ID

Required (R) /
Optional (O) /
Conditional (C)
R

R

R

Notes

Result of reconfiguration authentication.
Ciphertext output of AES-SIV using reconfiguration key ke as per 6.5.4

Unique one octet value identifying an in-progress exchange. This attribute is a component
of the Wrapped Data

© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 128 of 188

Wi-Fi Easy Connect™ Specification v3.0 @
ol
Attribute Required (R) / Notes

Optional (O) /
Conditional (C)

Protocol Version R Value 2 or above, indicates the negotiated DPP protocol version. This attribute is a
component of the Wrapped Data

Configurator Nonce R This attribute is a component of the Wrapped Data

Enrollee Nonce R This attribute is a component of the Wrapped Data

Py

Reconfiguration Flags This attribute is a component of the Wrapped Data

8.2.19 Push Button Presence Announcement

The Push button Presence announcement frame uses the DPP Public Action frame format and is broadcast by an
unmanaged DPP device.

The Attribute in the Presence Announcement frame is shown in Table 53.

Table 53. Attributes in the Push Button Presence Announcement frame

Attribute R/O/IC Notes
Enrollee Bootstrapping R The digest containing the Initiator's public bootstrapping key.
Key Hash

8.2.20 Push button presence announcement response

The Push button Presence Announcement Response frame uses the DPP Public Action frame format and is sent in
response to the push button Announcement frame by the enrollee. This a unicast Public Action frame.

The Attribute in the Presence Announcement frame is shown in Table 54.

Table 54. Attributes in the Push Button Presence Announcement Response frame

Attribute R/O/C Notes

Configurator R The digest containing the Configurator's public bootstrapping key.
Bootstrapping Key Hash

Enrollee Bootstrapping R The digest containing the Enrollee's public bootstrapping key.
Key Hash

C-Nonce R Configurator Nonce

8.2.21 Private Peer Introduction Query

The Private Peer Introduction Query frame uses the DPP Public Action frame format and is transmitted by a DPP Device
to discover Peer devices for private network introduction.

The attributes included in the Private Peer Introduction Query frame are shown in Table 55
Table 55. Attributes in the Private Peer Introduction Query frame

Attribute Required (R) / Notes
Optional (O) /
Conditional (C)

Transaction ID R Unique one octet value identifying a pending attempt

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 129 of 188

Wi-Fi Easy Connect™ Specification v3.0 @
ol
Attribute Required (R) / Notes

Optional (O) /
Conditional (C)
Protocol Version R The highest version of DPP supported by the sender.

8.2.22 Private Peer Introduction Notify

The Private Peer Introduction Notify frame uses the DPP Public Action frame format and is transmitted by a DPP Device
to facilitate network introduction of Peer devices.

The attributes included in the Private Peer Introduction Notify frame are shown in Table 56.

Table 56. Attributes in the Private Peer Introduction Notify frame

Attribute Required (R) / Notes
Optional (O) /
Conditional (C)

Transaction ID R Unique one octet value identifying a pending discovery attempt by a peer
Protocol Version R The highest version of DPP supported by the sender
Connector R JSON-encoded Connector, see section 4.5

8.2.23 Private Peer Introduction Update

The Private Peer Introduction Update frame uses the DPP Public Action frame format and is transmitted by a DPP Device
to enable network introduction of Peer devices.

The attributes included in the Private Peer Introduction Update frame are shown in Table 57.

Table 57. Attributes in the Private Peer Introduction Update frame

Attribute Required (R) / Notes
Optional (O) /
Conditional (C)

Transaction ID R Unique one octet value identifying a pending transaction

Wrapped Data R Ciphertext output of HPKE with AAD constructed per 6.6.3

Protocol Version R The highest version of DPP supported by the sender, this attribute is a component of the
Wrapped Data

Connector R JSON-encoded Connector, see section 4.5, this attribute is a component of the Wrapped
Data

8.3 DPP Generic Advertisement Service (GAS) frames

8.3.1 General Format

The DPP Configuration Request/Response frames use the Generic Advertisement Service (GAS) frame format (as
defined in [1]) and include elements based on the definition of DPP Public Action frames format in Section 8.2.1 with a
vendor specific Advertisement protocol ID. GAS is used as it provides a fragmentation capability for the response frames,
which may be required for large DPP Configuration object attributes.

The address 3 value shall be set to the broadcast address for all DPP Configuration Request/Response frames.
© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 130 of 188

Wi-Fi Easy Connect™ Specification v3.0

8.3.2

DPP Configuration Request frame

Telianc”

The DPP Configuration Request frame is transmitted by a DPP Enrollee to DPP Configurator to request configuration

information.

The DPP Configuration Request is a GAS Initial Request frame with vendor specific content and is constructed using the

information in Table 58.

Field
Category
Action

Dialog Token

Advertisement
Protocol Element

Advertisement
Protocol ID

Query Request
Length

Query Request

Attribute

Wrapped Data
Enrollee Nonce

Initiator Protocol Key

Initiator Authenticating
Tag

Size (octets)

Table 58. General Format of DPP Configuration Request frame

Value (Hexadecimal)

1 0x04

1 Ox0A

1

3 6C 08 00

7 DD 05 50 6F 9A 1A 01
2

variable

Description

IEEE 802.11 Public Action frame usage. See Table 9-47 [1]

IEEE 802.11 GAS Initial Request frame usage. See Table 9-307 [1]

Set to a value to identify the request/response transaction. See Figure 9-77 [1]

Indicates a GAS Query using a vendor specific advertisement protocol (See
[1D.
Element ID = 0x6C
Length = 0x08 (length of all Advertisement Protocol fields)
Query Response Info: 0x00
Query Response Length = 0x00 (for transmission)
PAME-BI = 0x00

Vendor-specific Element ID = 0xDD

Length = 0x05 (length of OUI and Type fields)

OUI = 0x 50 6F 9A (Wi-Fi Alliance specific OUI)

OUI Type = Ox1A

Type = 0x01, denoting the DPP Configuration protocol

Set to a nonzero value to identify the request transaction.

Contains all applicable attributes shown in Table 59

Table 59. Attributes in the DPP Configuration Request frame

Required (R) /
Optional (O) /
Conditional (C)

R

R

C Present when the
Configurator has
requested a new
protocol key in a
previous Configuration
Request

C Otherwise

C Present when the

Configurator has
requested a new
protocol key in a
previous Configuration
Request

Notes

Ciphertext output of AES-SIV wrapping of sub-objects.
This attribute is a component of the Wrapped Data

A new protocol key for the Configurator to use when generating a Connector.
This is a component of Wrapped data.

Not present

An authenticating tag which provides proof-of-possession of the private
protocol key. This is a component of Wrapped Data.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 131 of 188

Wi-Fi Easy Connect™ Specification v3.0 wilDl
e
Attribute Required (R) / Notes

Optional (O) /
Conditional (C)

C Otherwise Not present
DPP Configuration R Both Enrollee and One or more JSON-encoded DPP Configuration Attribute Object attributes.
Request Object (one or Configurator indicated These are components of Wrapped Data.
more) that the protocol
version is greater than
1.
R Otherwise One JSON-encoded DPP Configuration Request Object attribute. This is a

component of Wrapped Data.

8.3.2.1 Fragmentation

If the initial DPP Configuration Response frame (section 8.3.3) is a GAS Initial Response frame indicating fragmentation
(non-zero comeback delay), then the DPP Configuration Response frame for Fragments, defined in Table 60, is used by
the requesting STA to retrieve subsequent fragments of the configuration response. The operation of GAS fragmentation
is described in section 11.25.3.2.1 of [1].

The format of the DPP Configuration Request for Fragments frame is given in Table 60.

Table 60. General Format of DPP Configuration Request frame for Fragments

Field Size (octets) Value (Hexadecimal) Description

Category 1 0x04 IEEE 802.11 Public Action frame usage. See Table 9-47 [1]

Action 1 0x0C IEEE 802.11 GAS Comeback Request usage. See Table 9-307 [1]

Dialog Token 1 Set to a value to identify the request/response transaction. It is copied from the

corresponding DPP GAS Configuration Request. See Figure 9-77 in [1].

8.3.3 DPP Configuration Response frame

The DPP Configuration Response frame is transmitted by a DPP Configurator to a DPP Enrollee in response to DPP
Configuration Request frame.

The DPP Configuration Response frame is a GAS Initial Response frame with vendor specific content and is constructed
using the information in Table 61.

Table 61. General Format of DPP Configuration Response frame

Field Size (octets) Value (Hexadecimal) Description

Category 1 0x04 IEEE 802.11 Public Action frame usage. See Table 9-47 [1]

Action 1 0x0B IEEE 802.11 GAS Initial Response frame usage. See Table 9-307 [1]

Dialog Token 1 Set to a value to identify the request/response transaction. It is copied from the

DPP Configuration Request. See Figure 9-77 [1]

Status Code 2 Status code as defined in [1]

GAS Comeback 2 00 00 or 01 00 or larger = This field (in little endian encoding) is set to O if the full response fits in a single

Delay to indicate more time is = frame or to 1 if fragmentation is needed. If the Configurator needs more than
needed 100 ms of time to generate the response, this field indicates how long the

Enrollee should wait before sending the GAS Comeback Request frame.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 132 of 188

Wi-Fi Easy Connect™ Specification v3.0

Field

Advertisement
Protocol element

Advertisement
Protocol ID

Query Response
Length

Query Response

Attribute

DPP Status
Wrapped Data
Enrollee Nonce

CSR Attributes Request

Finite Cyclic Group

Responder Protocol Key

DPP Configuration
Object (one or more)

Size (octets) Value (Hexadecimal)

3 6C 08 7F

7 DD 05 50 6F 9A 1A 01
2

variable

Telianc”

Description

Indicates a GAS Query using a vendor specific advertisement protocol (See
[1D.
Element ID = Ox6C
Length = 0x08 (length of all Advertisement Protocol fields)
Query Response Info: Ox7F
Query Response Length = 0x7F (fragments allowed)
PAME-BI = 0x00
Vendor-specific Element ID = OxDD
Length = 0x05 (length of OUI and Type fields)
OUI = 0x 50 6F 9A (Wi-Fi Alliance specific OUI)
OUI Type = 0x1A
Type = 0x01 denoting the DPP Configuration protocol
Length in octets of the Query Response field in this frame when the full
response fits into a single frame. When fragmentation is needed, this is set to 0

and the Query Response is returned in subsequent GAS Comeback Response
frames.

Contains all applicable attributes included in Table 62 when the full response
fits into a single frame; otherwise, this field is empty in the GAS Initial
Response frame and the contents is included in subsequent GAS Comeback
Response frames.

Table 62. Attributes in the DPP Configuration Response frame

Required (R) /
Optional (O) /
Conditional (C)
R

R
R
C Both Enrollee and

Configurator indicated that

the protocol version is
greater than 1.

Otherwise

The Configurator is
requesting the Enrollee to
generate a new Protocol
key.

Otherwise

The Configurator is
requesting the Enrollee to
generate a new Protocol
key.

Otherwise

Both Enrollee and
Configurator indicated that
the protocol version is
greater than 1.

Notes

Error code
Ciphertext output of AES-SIV wrapping of sub-attributes.
This attribute is a component of Wrapped Data

A base64-encoded DER-encoded ASN.1 string representing a CsrAttrs per
section 4.5.2 of RFC 7030 [47]. This attribute is only present when the DPP
Status attribute contains STATUS_CSR_NEEDED.

Not present

The group from which the new Protocol key is to be generated. This attribute
is only present when the DPP Status attribute is
STATUS_NEW_KEY_NEEDED. This attribute is a component of Wrapped
Data.

Not present.

A key for the Enrollee to use to prove possession of its new Protocol key in
the new group. This attribute is present when the DPP Status attribute is
STATUS_NEW_KEY_NEEDED. This attribute is a component of Wrapped
Data.

Not present.

One or more JSON-encoded DPP Configuration Object attribute. These are
components of Wrapped Data. These attributes are only present when the
Enrollee device wants to be configured for network access (infrastructure or
P2P) and DPP Status attribute contains STATUS_OK. When a DPP
Configuration Response frame contains one or more DPP Configuration
Object attributes, it shall not contain any DPPEnvelopedData attributes.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 133 of 188

Wi-Fi Easy Connect™ Specification v3.0

Attribute

DPPEnvelopedData

Required (R) /
Optional (O) /
Conditional (C)

C Otherwise

C Both Enrollee and
Configurator indicated V2
during Authentication

C Otherwise

8.3.3.1 Fragmentation

Telianc”

Notes

One JSON-encoded DPP Configuration Object attribute. This is a component
of Wrapped Data. This attribute is only present when the DPP Status
attribute contains STATUS_OK.

This attribute is only present when the Enrollee device want to be
Configurator and when the DPP Status attribute contains STATUS_OK.
When a DPP Configuration Response frame contains a DPPEnvelopedData
attribute, it shall not contain any DPP Configuration Object attributes.

Not present.

If the response exceeds the frame size, the response will be fragmented using a DPP Configuration Response frame for
Fragments. The Comeback delay value is set to zero. The format of the DPP Configuration Response frame for
Fragments is given in Table 63.

Table 63. General Format of DPP Configuration Response frame for Fragments

Field
Category
Action

Dialog Token

Status Code

GAS Query
Response Fragment
ID

GAS Comeback
Delay

Advertisement
Protocol element

Advertisement
Protocol ID

Query Response
Length

Query Response

Size (octets) Value (Hexadecimal)

1 0x04

1 0x0D

1

2

1

2 00 00

3 6C 08 7F

7 DD 05 50 6F 9A 1A 01
2

variable

Description

IEEE 802.11 Public Action frame usage. See Table 9-47 [1]
IEEE 802.11 GAS Comeback Response frame usage. See Table 9-307 [1]

Set to a value to identify the request/response transaction. It is copied from the
DPP Configuration Request frame. See Figure 9-77 [1]

Status code as defined in[1]

GAS fragment number. See section 9.4.1.34 [1]

Indicates a GAS Query using a vendor specific advertisement protocol (See
[1D.
Element ID = 0x6C
Length = 0x08 (length of all Advertisement Protocol fields)
Query Response Info: 0X7F
Query Response Length = 0x7F (fragments allowed)
PAME-BI = 0x00
Vendor-specific Element ID = 0xDD
Length = 0x05 (length of OUI and Type fields)
OUI = 0x 50 6F 9A (Wi-Fi Alliance specific OUI)
OUI Type = 0x1A
Type = 0x01, denoting the DPP Configuration protocol

Length in octets of the Query Response field in the frame.

Contains all applicable attributes included in Table 62 fragmented over two or
more GAS Comeback Response frames.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 134 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

8.3.4 DPP Status and Error Codes

The DPP Authentication, Configuration and Network Introduction protocols as well as PKEX use DPP Status fields to
represent status as well as communicate errors. The possible values for the DPP Status field in the DPP protocols and
PKEX are defined in Table 64.

Table 64. DPP Status and Error Codes

Status or Error Value Meaning

STATUS_OK 0 No errors or abnormal behavior

STATUS_NOT_COMPATIBLE 1 The DPP Initiator and Responder have incompatible capabilities

STATUS_AUTH_FAILURE 2 Authentication failed

STATUS_BAD_CODE 3 The code used in PKEX is bad

STATUS_BAD_GROUP 4 An unsupported group was offered

STATUS_CONFIGURE_FAILURE 5 Configurator refused to configure Enrollee

STATUS_RESPONSE_PENDING 6 Responder will reply later

STATUS_INVALID_CONNECTOR 7 Received Connector is invalid for some reason. The sending device needs to be reconfigured.

STATUS_NO_MATCH 8 Received Connector is verified and valid but no matching Connector could be found. The
receiving device needs to be reconfigured.

STATUS_CONFIG_REJECTED 9 Enrollee rejected the configuration.

STATUS_NO_AP 10 Enrollee failed to discover an access point.

STATUS_CONFIGURE_PENDING 11 Configuration response is not ready yet. The enrollee needs to request again.

STATUS_CSR_NEEDED 12 Configuration requires a Certificate Signing Request. The enrollee needs to request again.

STATUS_CSR_BAD 13 The Certificate Signing Request was invalid.

STATUS_NEW_KEY_NEEDED 14 The Enrollee needs to generate a new Protocol key.

8.4 Network Introduction Protocol Elements

8.4.1 Overview

When Peers use Connectors to establish a security association, they shall use the AKM defined in section 8.4.2 and
follow the security procedures described in Clause 12.6 of [1].

8.4.2 Network Introduction Protocol AKM Suite

The Network Introduction protocol AKM Suite Selector is included in the RSN element as defined in Clause 9.4.2.25.3 of
[1]. PMF shall be enabled for all associations using the Network Introduction protocol AKM.

The Network Introduction protocol AKM Suite Selector is defined in Table 65. References in the table point to clauses in
[1]. A Peer using this AKM shall use PRF from [1] with the hash algorithm given in Table 4 for PTK derivation, which is
dependent on the length of the prime.

The length of the hash algorithm output shall be used as the length of PMK. The Nonce length in Table 4 shall be used as
the length of KCK and EAPOL-Key MIC. The length of KEK shall be 128 if the Nonce length is 128; otherwise, the length
of KEK shall be 256. The NIST AES key wrap shall be used as the EAPOL-Key encryption algorithm. The Integrity
Algorithm is HMAC with the hash algorithm from Table 4. The Key Descriptor Version shall be set to zero on all
transmitted EAPOL-Key frames.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 135 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

Table 65. AKM Suite Selector for Network Introduction Protocol

oul Suite Type Meaning
Authentication Type Key Management Type Key Derivation Type
50 6F 9A 2 Authentication with Hash RSNA key management as Defined in section 12.7.1.7.2 [1], and section 6.6.6

Algorithm given in Table 4 defined in section 12.7 [1] or | using Hash Algorithm given in Table 4 as Hash.
using PMK caching defined
in section 12.6.10.3 [1] —
Cached PMKSAs and
RSNA key management

8.5 DPP Elements

8.5.1 Overview

Elements defined by DPP are indicated with the Vendor Specific Element ID (221) from IEEE 802.11-2016. Each DPP
Element shall contain the Wi-Fi Alliance OUI Organizational Identifier field and the first octet of the Vendor-specific
content field shall be a unique element identifier issued by the Wi-Fi Alliance.

8.5.2 Configurator Connectivity Element

The Configurator Connectivity Element shall be advertised in Beacon and Probe Response frames by APs that are, or act
as a Relay for, a Configurator. This allows the AP to serve stations and provision Enrollees simultaneously. The element
identifier (the first octet of the Vendor-specific content field of the Element) shall be 0x1E. The format of the Configurator
Connectivity Element is show in Figure 33.

221 4 50 6F 9A 1E

Octets: 1 1 3 1

Figure 33. Configurator Connectivity Element

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 136 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

9 DPP Configuration Backup and Restore

9.1 Overview

This section specifies the syntax for DPP Configurator’s configuration information backup and restore.
Section 9.2 specifies the DPPAsymmetricKeyPackage.
Section 9.3 specifies the DPPEnvelopedData, which is the encrypted form of the DPPAsymmetricKeyPackage.

Section 9.6 and section 9.7 specify the procedures for the Configurator’'s configuration backup and restore.

9.2 DPPAsymmetricKkeyPackage
The syntax for the DPPAsymmetricKkeyPackage is a profiled version of AsymmetricKeyPackage (RFC 5958 [28]).
DPPAsymmetricKeyPackage ::= AsymmetricKeyPackage
AsymmetricKeyPackage ::= SEQUENCE SIZE (1..MAX) OF OneAsymmetricKey
OneAsymmetricKey ::= SEQUENCE {
version Version,
privateKeyAlgorithm PrivateKeyAlgorithmldentifier,
privateKey PrivateKey,
attributes [0] Attributes OPTIONAL,
[[2: publicKey [1] BIT STRING OPTIONAL 17,
}
Version ::= INTEGER { v1(0), v2(1) } (vi, ..., Vv2)

PrivateKeyAlgorithmldentifier ::= Algorithmldentifier

PrivateKey ::= OCTET STRING -- Contains DER encoding of ECPrivateKey

Attributes ::= SET OF Attribute { { OneAsymmetricKeyAttributes } }

In case of a DPPAsymmetricKkeyPackage, two additional restrictions are specified.
There shall be one instance of Type Attribute in the component attributes of an instance of Type OneAsymmetricKey.

The Type Attribute is defined in RFC5911 [42] and consists of a component attrType and a component attrValues. The
component attrValues is defined as a SET OF ATTRIBUTE. There shall only be one instance of Type ATTRIBUTE in the
component attrValues in an instance of Type Attribute.

The fields in DPPAsymmetricKeyPackage are as follows:

version is set to v1(0).

privateKeyAlgorithm is set to ECDSA or ECDH.

privateKey is an OCTET STRING that contains the private Configurator signing key c-sign-key,
encoded as the ECPrivateKey SEQUENCE as specified in RFC 5915 [30]:

ECPrivateKey ::= SEQUENCE {
version INTEGER { ecPrivkeyVer1(l) } (ecPrivkeyVerl),
privateKey OCTET STRING,
parameters[O0] ECParameters {{ NamedCurve }},
publicKey[1] BIT STRING OPTIONAL}

NOTE: v2 is only to be used if the public key is present else v1(0) is to be used.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 137 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Attributes shall contain the following attribute:

OneAsymmetricKeyAttributes ATTRIBUTE ::= {
aa-DPPConfigurationParameters,
. —— For local profiles

}

aa-DPPConfigurationParameters ATTRIBUTE ::=
{ TYPE DPPConfigurationParameters IDENTIFIED BY id-DPPConfigParams }

wfaProject OBJECT IDENTIFIER ::= {1 36 14 1 40808 1 }
wfaDpp OBJECT IDENTIFIER ::= { wfaProject 2 }
id-DPPConfigParams OBJECT IDENTIFIER ::= { wfaDpp 1 }
DPPConfigurationParameters ::= SEQUENCE {
privacyProtectionKey PrivateKey,
configurationTemplate UTF8String,
connectorTemplate UTF8String OPTIONAL
}
}
Specifically:

9.3

privacyProtectionKey is an OCTET STRING that contains privacy-protection-key, the private Configurator privacy
protection key, encoded as the ECPrivateKey SEQUENCE as defined above for the encoding of privateKey
ConfigurationTemplate corresponds to a JSON configuration object as defined in Table 9 minus the fields
Privacy-protection-key, Enterprise Credentials, C-sign-key and signedConnector

ConnectorTemplate corresponds to a JSON object as defined in Table 13 minus the netAccessKey field
ConnectorTemplate is an optional field of the Configuration sequence. It shall be present if there are one or more
group IDs defined for the network

DPPEnvelopedData

The syntax for the DPPEnvelopedData is a profiled version of EnvelopedData as defined in [28].

In RFC 5652 [27], an enveloped-data content type consists of encrypted content of any type and an encrypted content-
encryption key for one or more recipients. The combination of the encrypted content and one encrypted content-
encryption key is called a "digital envelope”. Any type of content can be enveloped for an arbitrary number of recipients.

DPPEnNvelopedData encrypts the DPPAsymmetricKkeyPackage with a content-encryption key derived from a password.

DPPEnvelopedData ::= EnvelopedData

EnvelopedData ::= SEQUENCE {
version CMSVersion,
originatorinfo [0] IMPLICIT Originatorinfo OPTIONAL,
recipientinfos Recipientinfos,
encryptedContentinfo EncryptedContentinfo,

unprotectedAttrs [1] IMPLICIT UnprotectedAttributes OPTIONAL}

Recipientinfos ::= SET SIZE (1..MAX) OF Recipientinfo

Specifically:

version shall be assigned to 3.

originatorinfo is omitted.

Recipientinfo is described below.

recipientinfos shall always contain a single Recipientinfo as described below.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 138 of 188

Wi-Fi Easy Connect™ Specification v3.0 '

Ky
encryptedContentinfo shall always contain the encrypted DPPAsymmetricKeyPackage as described
below. There is only one recipientinfo in the sequence.
unprotectedAttrs shall always be absent.

The EncryptedContentlnfo contains the encrypted DPPAsymmetricKeyPackage.

EncryptedContentInfo ::= SEQUENCE {
contentType ContentType,
contentEncryptionAlgorithm ContentEncryptionAlgorithmldentifier,
encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL

}

EncryptedContent ::= OCTET STRING

id-DPPAsymmetricKeyPackage OBJECT IDENTIFIER ::= { wfaDpp 2 }

Specifically:

contentType shall always be id-DPPAsymmetricKeyPackage, indicating that the encrypted content
contains a DPPAsymmetricKeyPackage.

contentEncryptionAlgorithm shall always indicate that the content was encrypted using AES-SIV
(id-alg-AES-SIV-CMAC-aead-256, id-alg-AES-SIV-CMAC-aead-384 or id-alg-AES-SIV-CMAC-aead-512,
see [40] and see specification of encryptedKey below).

encryptedContent shall always be present, and the OCTET STRING shall contain the result of
encrypting the DPPAsymmetricKeyPackage with AES-SIV using the key derived from a password as
described below and using zero components of AAD.

The Recipientinfo shall always use the pwri CHOICE as described in RFC 5652.

Recipientinfo ::= CHOICE {
ktri KeyTransRecipientinfo,
kari [1] KeyAgreeRecipientinfo,
kekri[2] KEKRecipientinfo,
pwri [3] PasswordRecipientinfo,
ori [4] OtherRecipientinfo

}

PasswordRecipientinfo ::= SEQUENCE {
version CMSVersion,
keyDerivationAlgorithm [0] KeyDerivationAlgorithmldentifier OPTIONAL,
keyEncryptionAlgorithm KeyEncryptionAlgorithmldentifier,
encryptedKey EncryptedKey

}

Specifically:

version shall always be set to O.

keyDerivationAlgorithm shall always be id-PBKDF2 as specified in RFC 8018[29], and the
parameters shall always contain the PBKDF2-params SEQUENCE as described below
keyEncryptionAlgorithm shall always indicate that the content-encryption key was encrypted
using AES-SIV (id-alg-AES-SIV-CMAC-aead-256, id-alg-AES-SIV-CMAC-aead-384 or id-alg-AES-SIV-
CMAC-aead-512, see [40] and see specification of keylLength below).

encryptedKey is the result of encrypting the fresh content-encryption key with AES-SIV using
the key-encryption key derived from the password and using zero components of AAD. The
keyLength of the content-encryption key shall be set as indicated in Table 3, based on the
curve for the Configurator signing key c-sign-key, or to 256 bit in case of a non-DPP
network.

PBKDF2, as specified in RFC 8018[29], shall always be used as key derivation algorithm, and
the parameters below shall always be used to derive the AES-SIV key-encryption key from the
user-supplied password.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 139 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

id-PBKDF2 OBJECT IDENTIFIER :-:= { 1 2 840 113549 1 5 12 }

PBKDF2-params ::= SEQUENCE {
salt CHOICE {
specified OCTET STRING,
otherSource Algorithmldentifier

¥
iterationCount [INTEGER (1.-MAX),
keyLength INTEGER (1..-MAX),
prf Algorithmldentifier}

Specifically:

salt shall be set to a random or pseudorandom 64 octet value.

iterationCount shall be set to 1000.

keyLength shall be set as indicated in Table 4 based on the curve for the Configurator
signing key c-sign-key or to 256 bit in case of a non-DPP network. .

prf shall be set to 1d-hmacWithSHA-256, id-hmacWithSHA384 or id-hmacWithSHA-512SHA-512, as
specified in RFC 8018[29], which identify the HMAC SHA-256/384/512 algorithms. The hash
output length shall be as indicated in Table 3 based on the curve for the Configurator
signing key c-sign-key or to 256 bit in case of a non-DPP network.

NOTE: Salt, c, and dkLen parameters are obtained from the PBKDF2-params in the keyDerivationAlgorithm field of the
Recipientinfo.

9.4

DPPAsymmetricKeyPackage Encryption

To construct the DPPEnvelopedData from a DPPAsymmetricKkeyPackage, the encryption procedure is composed of the
following steps:

1.
2.
3.

9.5

Select a salt S and set the iteration count ¢ to 1000.
Select the length in octets, dkLen, for the derived key for the underlying encryption scheme.

Apply the selected key derivation function to the password P, the salt S, and the iteration count c to produce a
derived key DK of length dkLen octets: DK = PBKDF2 (P, S, c, dkLen).

Encrypt the DPPAsymmetricKkeyPackage with the underlying encryption scheme under the derived key DK to
produce the DPPEnvelopedData. This step may involve selection of parameters such as an initialization vector
and padding, depending on the underlying scheme.

DPPEnvelopedData Decryption

The decryption operation of the DPPEnvelopedData consists of the following steps:

1.

2
3.
4

Obtain the salt S for the operation.
Obtain the iteration count c for the key derivation function.
Obtain the key length in octets, dkLen, for the derived key for the underlying encryption scheme.

Apply the selected key derivation function to the password P, the salt S, and the iteration count c to produce a
derived key DK of length dkLen octet: DK = PKBDF2 (P, S, c, dkLen).

Decrypt the DPPEnvelopedData with the underlying encryption schema under the derived key DK to recover the
DPPAsymmetricKeyPackage. If the decryption function outputs "decryption error," then output "decryption error"
and stop.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 140 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

9.6 DPP Configuration Backup

The DPP digital envelope should be stored at a designated uniform resource identifier in the DPP network, for example,
wireless drive or AP, or onto a removable media. The methods to store and retrieve the DPP Digital Envelop, including the
uniform resource identifier, are vendor specific. The owner is responsible for managing the password to protect the
content-encryption key.

9.7 DPP Configuration Restore

To restore a Configurator’s configuration on a new device, the DPP digital envelope is retrieved from a designated uniform
resource identifier in the DPP network, for example, wireless drive or the AP, or removable media. The owner uses the
password method for deriving the content-encryption key to decrypt the DPP digital envelope on the new device to restore
the old Configurator’s configuration on a new device. Upon decryption, the information in the DPP
AsymmetricKeyPackage, including the (signature and verification) key pairs, can be used by the restored Configurator to
manage the network and enroll new devices.

A recipient opens the digital envelope by decrypting one of the encrypted content-encryption key and then decrypting the
encrypted content with the recovered content-encryption key.

9.8 Enabling Multiple Configurators in DPP

Enabling multiple Configurators in DPP consists of multiple Configurators sharing the (signature, verification) key pair, as
well as additional information, which is to be used to allow a new Configurator to gauge a consistent view of the network.

Enabling multiple Configurators may be done with either of the following two methods:

1. The procedure to backup and restore in DPP may be used to enable multiple Configurators. Specifically, the
current Configurator prepares a DPP digital envelope as specified in section 9.6. The DPP digital envelope may
be stored at a designated uniform resource identifier. The restore procedure described in section 9.7 may be used
to restore the configuration on one or multiple new devices which the owner wants to use as additional
Configurators.

2. Alternatively, a new Configurator may be enabled and configured using the DPP Configuration protocol, see
section 6.4, where the new Configurator acts as an Enrollee and sets the netRole to "configurator" in the DPP
Configuration Request frame.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 141 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Appendix A Implementation Guidelines

A.1 Using DPP to Configure Enterprise Credentials

Section 6.4.3 describes the process for configuring an Enrollee to connect to a network that uses WPA-Enterprise
credentials, i.e., an X.509 certificate used for network authentication. The diagram below depicts an example of that
process. Itis meant as a guideline for implementors to better understand the workflow and signaling involved.

To provision an Enrollee with a certificate, the Configurator shall have access to the network's certificate or registration
authority. The diagram labels this new actor as "CA/RA". The remainder of this discussion uses CA only for brevity.

The message flow is shown in Figure 34 begins in DPP's configuration stage. Having successfully bootstrapped and
authenticated, the Enrollee sends a normal configuration request to the Configurator. The Configurator, knowing it needs
to provision the Enrollee for an enterprise network, responds by instructing the Enrollee to generate a certificate signing
request (CSR) and it includes in the CSR Attributes a payload instructing the Enrollee how to generate the CSR, including
any requirements on the public key (particular curve, key length, etc.) or requests for additional identifying information.
The Configurator then waits for the Enrollee to reply with a new configuration request. The Enrollee subsequently
includes a properly formatted CSR that includes the desired attributes in another configuration request.

A CSR shall contain a subject name. [45] refers to this as “the distinguished name of the certificate subject (the entity
whose public key is to be certified).” The resulting certificate binds the certified public key to this identity and as such most
CAs enforce name unigueness—they will not produce two valid certificates for the same subject name. This means that
an Enrollee shall populate the distinguished name of the CSR with, at the very least, an id-at-commonName (OID 2.5.4.3)
comprising a string that will uniquely identify the Enrollee. This uniqueness requirement may be satisfied in any manner
suitable to the Enrollee—for example, a hostname or a device type concatenated with a serial number. The exact method
used, though, is out of scope of this technical specification. This uniqueness requirement shall be satisfied regardless of
the presence of other alternate forms of identification being requested in a CSR Attributes request.At this point, the
Configurator performs two actions. First, it instructs the Enrollee to wait for its certificate. In some PKI implementations,
certificate issuance may require an administrative approval to issue a certificate. To deal with this workflow, the
Configurator uses a GAS Response frame and sets a comeback delay. The Enrollee uses the delay setting before
checking to see if the Configurator has received its certificate. The second action the Configurator takes is to forward the
Enrollee's CSR to the CA for processing.

In the example given, the comeback delay expires before a certificate is issued. Here, the Enrollee transmits a GAS
Comeback Request frame to the Configurator, but the Configurator has not received the Enrollee's certificate. In this
case, the Configurator sends a GAS Comeback Response frame and sets the comeback delay once more. Upon receipt
of this frame, the Enrollee waits until the delay time expires. These two frame exchanges continue as necessary until
such time that the CA issues the Enrollee's certificate. In other words, eventually, the Configurator retrieves the certificate
or perhaps the CA sends it to the Configurator.

When the Enrollee sends a comeback request and the Configurator has its certificate, DPP configuration continues. At
this point, the Configurator transmits a DPP Configuration Response frame to the Enrollee and includes the certificate in
the configuration payload. If the certificate is too large for a single transmission, the Configurator fragments the payload
across multiple configuration responses and the Enrollee sends GAS Comeback Response frames to direct the
Configurator to send each fragment. After receiving all fragments, the Enrollee ends the configuration phase by
transmitting a DPP Configuration Result frame.

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 142 of 188

Wi-Fi Easy Connect™ Specification v3.0 @
g
Enrollee Configurator CA/RA
I I
I — " " I
GAS Initial Request[DPP Configuration Request ({E-nonce,)
| configuration attributes}y.)] |
| GAS Initial Response[DPP Configuration Response |
[€—— (DPP Status = STATUS_CSR_NEEDED, {E-nonce | ——1
I CSR_Attributes_Request}ie)] I
| |
' GAS Initial Request[DPP Configuration Request '
I ({E-nonce, configuration attributes = CSR}e)] > |

GAS Initial Response[Comeback Delay]

i

‘ sleep (Comeback Delay)

GAS Comeback Request[]

|

GAS Comeback Response[Comeback Delay]

I
I
I
I
|
I
I
|
I
I
I
I
Certificate Signing Request (CSR) —}:
I
I
I
|
I
I
|
I
I

11

‘ sleep (Comeback Delay) Certificate Signing Response (Certificate Bundle)

I
|
I
I
I
I
I
Certificate bundle and other configuration attributes |
fragmented across multiple DPP Configuration Responses |
I
I
I
I
I
|
I
|

Figure 34. Example Message Flow for Enterprise Credential Provisioning

TLT

GAS Comeback Request|[]

GAS Comeback Response[DPP Configuration
Response (DPP Status = OK, {E-nonce,
configurationPayload [,sendConnStatus]})/

L]

GAS Comeback Request|[]

GAS Comeback Response[DPP Configuration
Response (DPP Status = OK, {E-nonce,
configurationPayload [,sendConnStatus]})/

802.11 Public Action[DPP Configuration
Result ({ DPP Status, E-nonce}.)]

IRERE

1T

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 143 of 188

Wi-Fi Easy Connect™ Specification v3.0

T_—
A

Appendix B (Informative) Test vectors

B.1 Test Vectors for DPP Authentication Using P-256 for Mutual Authentication

This section contains test vectors for the DPP Authentication protocol using curve P-256 and mutual authentication.

Curve used: NIST P-256
INITIATOR VALUES
Initiator is: Configurator

I-capabilities (1 octets):
02

Private bootstrapping key (32 octets):
15b2a83c 5a0a38b6 1f2aa820 0eed4994b 8afdcOlc 58507d10 d0a38f7e edf051bb

Public bootstrapping key
X (32 octets):
88b37ed9 1938b519 7097808a 62448476 17892046 d93b9501 afd48fal f148dfde

y (31 octets):
f73b6991 287884a9 c9a33f8e 0691f14d 44b59811 e9d8242d 010270b0 d33ecO

Private protocol key (32 octets):
a87de9af bb406c96 e5f79a3d f895ecac 3ad406f9 5da66314 c8chb3165 e0c61783

Public protocol key
X (32 octets):
50a532ae 2a072072 76418d2f a630295d 45569bed 25aa634f 02014d00 a7dlf6la

y (32 octets):
el4df35a5 a858bcca d90d126c¢c 46594c49 ef82655e 78888el5 a32d916a c2172491

DER-encoded ASN.1 (input to the SHA-256 hash) (59 octets):
30393013 06072a86 48ce3d02 0106082a 8648ce3d 03010703 22000288 b37ed919
38b51970 97808a62 44847617 892046d9 3b950laf d48faOfl 48dfde

DER-encoded ASN.1 base64 for use in the QR code (80 octets):
MDKwEWYHK0Z 1 zjOCAQY IKoZ1zjODAQcDIgACi LN+2Rk4tRIwI4CKYKSEdheJ 1EbZO5UBr9SPoPF1394=

I-nonce (16 octets):
13f4602a 16daeb69 712263b9 c46cba3l

RESPONDER VALUES
Responder is: Enrollee that wants to do mutual authentication

R-capabilities (1 octets):
01

Private bootstrapping key (32 octets):
54cel8la 98525121 7216f59b 245f60e9 df30ac7f 6b26c939 418cfc3c 42dlafal

Public bootstrapping key
X (32 octets):
09c585a9 1b4dfofd 25a04520 1885c39c chcfae39 7ddaeda9 57dec57F a0e3503F

y (32 octets):
52bf0596 8198a2f9 2883e96a 386d7675 79883302 dbf29210 5c90a436 94c2fd5c

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 144 of 188

Wi-Fi Easy Connect™ Specification v3.0

Private protocol key (32 octets):
798ed2e 19286f6a 6efe210b 1863badb 99af2ald b497634d bfd2a973 94fb5aab

Public protocol key
X (32 octets):
5e3fb357 6884887F 17c3203d 8a3a6c2f ac722ef0 e2201b61 ac73bc65 5¢c709a90

y (32 octets):
2d4b0306 69fh9eff 8b0a79fa 7clal72a c2a92c62 6256963F 9274dc90 682c81le5

DER-encoded ASN.1 (input to the SHA-256 hash) (59 octets):
30393013 06072a86 48ce3d02 0106082a 8648ce3d 03010703 22000209 c585a91b
4df9fd25 a0452018 85c39cch cfae397d daeda957 dec57fa0 e3503F

DER-encoded ASN.1 base64 for use in the QR code (80 octets):
MDkwEWYHK0Z 1zjOCAQY 1KoZ 1 zjODAQcD IgACCcWFgREN+FOIoEUgG IXDNMXPrj 192u2pV97FF6DjUD8=

R-nonce (16 octets):
3d0cthb01 1ca916d7 96f7029f f0b43393

Shared secrets

Secret M
X (32 octets):
dde28781 17d69745 be4f916a 2dd14269 d783d1d7 88c603bb 8746beab bdildbbbc

y (32 octets):
277f4abe 025c5759 5fbed85b a90df129 b7610364 4b2611d9 66edc23d 2650961d

Secret k1 (32 octets):
3d832a02 ed6d7fcl dc96d2ec eab738cf 01c0028e b256be33 d5a2la72 Ob¥fcfo49

Secret N
X (32 octets):
92118478 b75c21c2 c59340c8 42b5bce5 60a535f6 0bc37a75 fe390d73 8c58d8e8

y (32 octets):
ed71f714 46560207 01fe281F a851faba e7840a7l bce8a266 3e3deaff 50b6985d

Secret k2 (32 octets):
caO8bdee ef838ddf 897a5f01 f20bb93d c5a895cb 86788ca8 c00a7664 899bc310

Secret L
X (32 octets):
fb737234 c973cc3a 36e64e51 70a32F12 089d198c 73c2fd85 a53d0b28 2530Fd02

y (32 octets):
9876c937 b642cce8 T604bef0 c24ceOda d2c27867 08a7575a 940a58c fe8ca3ce

Secret ke (32 octets):
b6db6552 6c9a0174 c3bed56F 7e614f3a 656233c0 78693249 ac351642 5127e5d5

I-auth (32 octets):
d34944bb 4b1f05ca ebda762c 6e4ae034 c819ec2f 62a57dcf ade24738 76e007b2

R-auth (32 octets):
a725abe6 dc66ccf3 aa3d6d61 al9932fc bb0799ed 09FfF78e5 bc6d4ea5 ef8e8670

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 145 of 188

=

gj_i

H

Wi-Fi Easy Connect™ Specification v3.0

S

H

XXXX Unknown frame duration (msec)
YYYY Unknown fragment/Sequence number

DPP Auth Request frame from 9f:86:64:c1:b8:77 to 1a:c4:59:c4:0d:64

dOOOXXXX lac459c4 0d649f86 64clb877 lac459c4 0d64YYYY 0409506fF 9al1a0100
02102000 922ddd7a 3ed69f46 125d772b be6017cd 4e03870d c014509e 38b54628
el57a87d 01102000 5d467a09 760292fc 15d31792 b0a5b050 db8bf6ad 807d71b2
d93f4dlc 2e65d881 03104000 50a532ae 2a072072 76418d2f a630295d 45569be4
25aa634f 02014d00 a7dif6la el4f35a5 a858bcca d90d126c 46594c49 ef82655e
78888e15 a32d916a c2172491 18100200 51010410 2900868F 478fc599 ac3fa815
2b975eff 8bed4e71b 189dbefb c3185bld 7¥3864e8 96f913ch a3d96013 26278

Fields of the Authentication Request message (with tag and length part omitted)
Auth req fieldl, Responder Bootstrap Hash (32 octets):
922ddd7a 3ed69f46 125d772b be6017cd 4e03870d c014509e 38b54628 el57a87d

Auth req field2, Initiator Bootstrap Hash (32 octets):
5d467a09 760292fc 15d31792 b0a5b050 db8bf6ad 807d71b2 d93f4dlc 2e65d881

Auth req Ffield3, Initiator Protocol Key (64 octets):
50a532ae 2a072072 76418d2f a630295d 45569be4 25aa634f 02014d00 a7dlf6la
el4f35a5 a858bcca d90d126¢c 46594c49 ef82655e 78888el5 a32d916a c2172491

Auth req Ffield4, Channel (2 octets):
5101
Auth req field5, Data wrapped with ki1 (41 octets):

868F478F c599ac3f a8152b97 5eff8be4 e71b189d befbc318 5b1d7F38 64e89619
13cba3d9 6013262 78

DPP Auth Response frame from la:c4:59:c4:0d:64 to 9f:86:64:¢1:b8:77

dOOOXXXX 9f8664cl b877l1ac4 59c40d64 9f8664cl b877YYYY 0409506f 9ala0101
00100100 00021020 00922ddd 7a3ed69f 46125d77 2bbe6017 cd4e0387 0dc01450
9e38b546 28el157a8 7d011020 005d467a 09760292 fcl15d317 92b0a5b0 50db8bf6
ad807d71 b2d93f4d 1c2e65d8 81091040 005e3fbh3 57688488 7f17c320 3d8a3a6ce
2fac722e t0e2201b 6lac73bc 655c709a 902d4b03 0669fh9e FF8b0Oa79 fa7clal?
2ac2a92c 62625696 3f9274dc 90682c81 e5041075 0061058b 7101548 071cl702
26c23634 3e3f4e7c 9e2491el 14ed461b a5b6e869 65F7F399 e47edbe9 3ba3f666
1db68a49 3985d421 dleB8a3fc b03d1c93 987551ca 844882af a74c56d6 027ec748
b7731f4c 051b509c 2a9e1932 fa39b0e9 6710949 61a191d0 92333d69 50e6e60f
bad52857 7ca306bb 7b37

Fields of the Authentication Response message (with tag and length part omitted)
Auth resp fieldO, DPP_Status (1 octets):
00

Auth resp fieldl, Responder Bootstrap Hash (32 octets):
922ddd7a 3ed69f46 125d772b be6017cd 4e03870d c014509e 38b54628 e157a87d

Auth resp field2, Initiator Bootstrap Hash (32 octets):
5d467a09 760292fc 15d31792 b0a5b050 db8bf6ad 807d71b2 d93f4dlc 2e65d881

Auth resp field3, Responder Protocol Key (64 octets):
5e3fth357 6884887f 17c3203d 8a3a6c2f ac722ef0 e2201b61 ac73bc65 5¢c709a90
2d4b0306 69fb9eff 8b0a79fa 7clal72a c2a92c62 6256963F 9274dc90 682c81le5

Auth resp field4, Data wrapped with k2 (117 octets):

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 146 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

61058b7f 10154807 1c170226 c236343e 3f4e7c9e 2491el14 ed461ba5 b6e86965
f7¥399e4 7edbe93b a3f6661d b68a4939 85d421dl e8a3fcb0 3d1c9398 7551ca84
4882afa7 4c56d602 7ec748b7 731f4c05 1b509c2a 9e1932fa 39b0e967 1094961
al191d092 333d6950 e6e60fba d528577c a306bb7b 37

DPP Auth Confirm frame from 9f:86:64:¢c1:b8:77 to 1a:c4:59:¢c4:0d:64

dOOOXXXX lac459c4 0d649f86 64clb877 lac459c4 0d64YYYY 0409506F 9al1a0102
00100100 00021020 00922ddd 7a3ed69f 46125d77 2bbe6017 cd4e0387 0dc01450
9e38b546 28el57a8 7d011020 005d467a 09760292 fcl5d317 92b0a5b0 50db8bf6
ad807d71 b2d93f4d 1c2e65d8 81041034 00cb4d07 49561a33 0db9f76b fdef6fch
7d7949be d87eb685 63ac4ddl ab8bbaOf d9a525e2 8e5253db 040195ef 69aec9f0
f1e52426 38

Fields of the Authentication Confirm frame (with tag and length part omitted)
Auth conf fieldO, DPP_Status (1 octets):
00

Auth conf fieldl, Responder Bootstrap Hash (32 octets):
922ddd7a 3ed69f46 125d772b be6017cd 4e03870d c014509e 38b54628 el57a87d

Auth conf field2, Initiator Bootstrap Hash (32 octets):
5d467a09 760292fc 15d31792 b0a5b050 db8bf6ad 807d71b2 d93f4dlc 2e65d881

Auth conf field3, Data wrapped with ke (52 octets):
cb4d0749 561a330d b9f76bfd ef6fcb7d 7949bed8 7eb68563 ac4ddlab 8bbaOfd9
ab25e28e 5253db04 0195ef69 aec9fOfl 5242638

B.2 Test Vectors for DPP Authentication Using P-256 for Responder-only Authentication

This section contains test vectors for the DPP Authentication protocol using curve P-256 and only the Responder being
authenticated.

Curve used: NIST P-256
INITIATOR VALUES
Initiator is: Configurator

I-capabilities (1 octets):
02

Private protocol key (32 octets):
a87de9af bb406c96 e5f79a3d f895ecac 3ad406f9 5da66314 c8chb3165 e0c61783

Public protocol key
X (32 octets):
50a532ae 2a072072 76418d2f a630295d 45569be4 25aa634F 02014d00 a7dlf6la

y (32 octets):
eldf35a5 a858bcca d90d126c¢c 46594c49 ef82655e 78888el5 a32d9l16a c2172491

I-nonce (16 octets):
13f4602a 16daeb69 712263b9 c46cba3l

RESPONDER VALUES
Responder is: Enrollee that does not want to do mutual authentication)
R-capabilities (1 octets):

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 147 of 188

Wi-Fi Easy Connect™ Specificati

01

Private bootstrapping

on v3.0

key (32 octets):

54cel8la 98525121 7216f59b 245F60e9 df30ac7f 6b26c939 418cfc3c 42dlafal

Public bootstrapping
X (32 octets):

key

09c585a9 1b4dfofd 25a04520 1885c39c chcfae39 7ddaeda9 57dec57F a0e3503fF

y (32 octets):

52bT0596 8198a2f9 2883e96a 386d7675 79883302 dbf29210 5c90a436 94c2fd5c

Private protocol key (32 octets):
798ed2e 19286f6a 6efe210b 1863badb 99af2ald b497634d bfd2a973 94fb5aab

Public protocol key
X (32 octets):

5e3fb357 6884887F 17c3203d 8a3a6c2f ac722ef0 e2201b61 ac73bc65 5¢c709a90

y (32 octets):

2d4b0306 69fb9eff 8bOa79fa 7clal72a c2a92c62 6256963F 9274dc90 682c8le5

DER-encoded ASN.1 (input to the SHA-256 hash) (59 octets):
30393013 06072a86 48ce3d02 0106082a 8648ce3d 03010703 22000209 c585a91b
4df9fd25 a0452018 85c39cc5 cfae397d daeda957 dec57fa0 e3503F

DER-encoded ASN.1 base64 for use in the QR code (80 octets):

MDkwEWYHK0Z 1zjOCAQY 1KoZ1zjODAQcD IgACCCWFREN+FONoEUgG I XDNMXPrj 192u2pV97FF6DjUD8=

R-nonce (16 octets):

3d0cfb01 1ca916d7 96F7029Ff fOb43393

Shared secrets

Secret M
X (32 octets):

dde28781 17d69745 be4f916a 2dd14269 d783d1d7 88c603bb 8746beab bdldbbbc

y (32 octets):

277f4abe 025c5759 5fbed85b a90df129 b7610364 4b2611d9 66edc23d 2650961d

Secret k1l (32 octets):

3d832a02 ed6d7fcl dc96d2ec eab738cf 01c0028e b256be33 d5a2la72 Obfcf9o49

Secret N
X (32 octets):

92118478 b75c21c2 c59340c8 42b5bce5 60a535f6 0bc37a75 fe390d73 8c58d8e8

y (32 octets):

ed71f714 46560207 01fe281F a851faba e7840a7l1 bce8a266 3e3deaff 50b6985d

Secret k2 (32 octets):

caO8bdee ef838ddf 897a5f01 f20bb93d c5a895cb 86788ca8 c00a7664 899bc310

Secret L
X (0 octets):

y (0 octets):

Secret ke (32 octets):

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 148 of 188

S

H

Wi-Fi Easy Connect™ Specification v3.0

c8882a8a b30c8784 67822534 138c704e deOable8 73fe03b6 01a79084

I-auth (32 octets):
787d1189 b526448d 2901e7f6 c22775ce 514fce52 fc886¢cle 924F2fbb

R-auth (32 octets):
43509ef7 137d8c2f be66d802 ae09dedd 94d41b8c bfafb495 4782014F

XXXX Unknown frame duration (msec)
YYYY Unknown fragment/Sequence number

DPP Auth Request frame from 9f:86:64:c1:b8:77 to 1a:c4:59:c4:0d:64

dOOOXXXX
02102000
el57a87d
d93f4dic
25aa634f
78888e15
2b975eff

Fields of the Authentication Request message

Auth req
922ddd7a

Auth req
5d467a09

Auth req
50a532ae
eldf35a5

Auth req
5101

Auth req
8681478fF
13cba3d9

lac459c4
922ddd7a
01102000
2e65d881
02014doo
a32d916a
8bede71b

fieldl,
3ed69t46

field2,
760292fc

fields,
2a072072
a858bcca

field4,
field5,

c599ac3f
6013262

0d649f86 64clb877 lac459c4 0d64YYYY 0409506F
3ed69f46 125d772b be6017cd 4e03870d c014509e
5d467a09 760292fc 15d31792 b0a5b050 db8bf6ad
03104000 50a532ae 2a072072 76418d2f a630295d
a7dlf6la el4f35a5 a858bcca d90d126c¢c 46594c49
c2172491 18100200 51010410 2900868Ff 478fc599
189dbefb c3185bld 7¥3864e8 96f913cb a3d96013

Responder Bootstrap Hash (32 octets):
125d772b be6017cd 4e03870d c014509e 38b54628

Initiator Bootstrap Hash (32 octets):
15d31792 b0a5b050 db8bf6ad 807d71b2 d93f4dlc

Initiator Protocol Key (64 octets):
76418d2f a630295d 45569bed 25aa634f 02014d00
d90d126¢c 46594c49 ef82655e 78888el5 a32d916a

Channel (2 octets):
Data wrapped with k1 (41 octets):

aB8152b97 5eff8bed e71b189d befbc318 5bl1d7F38
78

DPP Auth Response frame from la:c4:59:c4:0d:64 to 9f:86:64:¢c1:b8:77

dOOOXXXX
00100100
9e38b546
f0e2201b
62625696
03c63948
5ae4038
42bf7dec
c6583d08

918664cl
00021020
28el57a8
6lac73bc
319274dc
b9bb5690
31e98a7e
c1f3b68d
b4aa

b8771ac4 59c40d64 9f8664cl b877YYYY 0409506fF
00922ddd 7a3ed69f 46125d77 2bbe6017 cd4e0387
7d091040 005e3fb3 57688488 7f17c320 3d8a3a6c
655c709a 902d4b03 0669fb9e ff8b0a79 fa7clal?
90682c81 5041075 00da553c df80da3e 27054c5e
ad12¥357 d75dfbc3 62cbae89 e472dd68 51925534
fc7deb95 16164329 c227039a e€73c5091 47d156ae
81697c61 97453cb6 faff7b06 2786107 3148052d

63fec87a

8d97b210

f4a3f91c

9a1a0100
38b54628
807d71b2
45569be4
ef82655e
ac3fa815
261278

el57a87d

2e65d881

a7dlif6la
c2172491

64e89619

9ala0101
0dc01450
2fac722e
2ac2a92c
1f809ac3
024310af
085f56¢2
b539895b

Fields of the Authentication Response message (with tag and length part

Auth resp fieldO, DPP_Status

00

(1 octets):

Auth resp fieldl, Responder Bootstrap Hash (32 octets):
922ddd7a 3ed69f46 125d772b be6017cd 4e03870d c014509e 38b54628 e157a87d

Auth resp field3, Responder Protocol Key (64 octets):
5e3fb357 6884887F 17c3203d 8a3ab6c2f ac722ef0 e2201b61 ac73bc65 5¢c709a90

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 149 of 188

(with tag and length part omitted)

omitted)

=

gj_i

H

Wi-Fi Easy Connect™ Specification v3.0

2d4b0306 69fb9eff 8bOa79fa 7clal72a c2a92c62 6256963F 9274dc90 682c81le5

Auth resp field4, Data wrapped with k2 (117 octets):

da553cdf 80da3e27 054c5elf 809ac303 c63948b9 bb5690ad 12¥357d7 5dfbc362
cbae89e4 72dd6851 92553402 4310aff5 ae403831 e98a7efc 7deb9516 164329c2
27039ae7 3c509147 d156ae08 5f56c242 bf7deccl f3b68d81 697c6197 453ch6fa
FF7b062F 78610731 48052db5 39895bc6 583d08b4 aa

DPP Auth Confirm frame from 9f:86:64:¢1:b8:77 to 1a:c4:59:¢c4:0d:64

dOOOXXXX lac459c4 0d649f86 64cl1b877 lac459c4 0d64YYYY 0409506fF 9ala0102
00100100 00021020 00922ddd 7a3ed69f 46125d77 2bbe6017 cd4e0387 0dc01450
9e38b546 28el157a8 7d041034 0054e07e 62c74526 dfd97e02 9dc781e0 771e573e
bc73c942 27b5de83 50fc6al9 74b40f54 c9felalc 9288a91f cedeebecl F2FF0697
41

Fields of the Authentication Confirm frame (with tag and length part omitted)
Auth conf fieldO, DPP_Status (1 octets):
00

Auth conf fieldl, Responder Bootstrap Hash (32 octets):
922ddd7a 3ed69f46 125d772b be6017cd 4e03870d c014509e 38b54628 e157a87d

Auth conf field3, Data wrapped with ke (52 octets):
54e07e62 c74526df d97e029d c781e077 1le573ebc 73c94227 b5de8350 fc6al974
b40f54c9 felalc92 88a9l1fce 4eebclf2 069741

B.3 Test Vectors for DPP Authentication Using P-384 for Mutual Authentication

This section contains test vectors for the DPP Authentication protocol using curve P-384 and mutual authentication.

Curve used: NIST P-384
INITIATOR VALUES
Initiator is: Configurator

I-capabilities (1 octets):
02

Private bootstrapping key (48 octets):
40428496 d8bbbla6 8c8bf2b6 bdlec803 9859e79d 9c3de9dc 675154c2 c0a37c3f
Oc7eed79 bf212e0d 48fcca28 42dade8c

Public bootstrapping key

X (48 octets):

b0d7d4ec bd61c96c F246a214 5cd797dc 1d0fd3b3 539b3e8e 2ace4lld 4ed736b9
5f29¢73d 515cbclc 8e9184d1 26361F9b

y (48 octets):
abedfl5b 7e5336ab 119e0507 ebab2dae 110ec3ab 04dbdcbf 871029c0 694a03c4
cdbl294a b9fb649c aeffdba5 ff0a4443

Private protocol key (48 octets):
5604fc7b c57eb6cc a29eflc6 56c¢c7e540 al6a94a6 3e367329 01829252 6b605af8
4fb3bfb5 59cadee5 7188cf02 f7578e94

Public protocol key

X (48 octets):

d1b2e632 135a5d77 d3da2la2 71bc0e23 eab9fl1c8 3c83772b f6ea988a 869d0f3b
bb066c82 4f8ab4ce 5cl1d638F ac4fob73

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 150 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

S

H

y (48 octets):
e4e8d9d4 d88d7el0 43d00577 c15f49a9 5bd921f8 16c946ba 89blfbe9 46e70dlc
ebdbccl0 7520a084 b8997a01 a250a2ca

DER-encoded ASN.1 (input to the SHA-256 hash) (72 octets):

30463010 06072a86 48ce3d02 0106052b 81040022 03320003 b0Od7d4ec bd61c96c
2462214 5cd797dc 1dOfd3b3 539b3e8e 2aced4lld 4ed736b9 5F29c73d 515cbclc
8e9184d1 26361f9b

DER-encoded ASN.1 base64 for use in the QR code (96 octets):
MEYWEAYHKo0Z 1 zj OCAQYFK4EEAC I DMgADsNTU7L1hyWzyRqg I UXNeX3BOPO7NTmz60Ks5BHU7XNr 1 fFKccOUVyY8H I 6RhNEmNh+b

I-nonce (24 octets):
29e6194d 0a5352a7 8fac5160 2bc8c120 52f10ea9 b49f6e50

RESPONDER VALUES

Responder is: Enrollee that wants to do mutual authentication

R-capabilities (1 octets):
01

Private bootstrapping key (48 octets):
9db83151 0572027 bfc8bfld 6aa8222b 178a30bb 70efbe9d 55e4b9d7 421735f5
b70fee9f aa4f3410 907c37cf 546248f8

Public bootstrapping key

X (48 octets):

6433bdc3 fd4ee707 d5026c6d f5a9b03a 2e2eb504 8c77697F ae7e2bbb FF7ed370
bf45e7bc 9d781085 87a89ed5 7d94a4b7

y (48 octets):
23fa7a95 76fd37f7 5d548a5d 115a5ecb 1b1c93ff 2bd14775 1¥3282F4 266Ffb8c
7e651e52 aafcc022 b25776de e84ddfcc

Private protocol key (48 octets):
452blaac ded5852b 7d12a5ff 717449b9 4fb291le 03b01335 2e58%9aal c6915987
144¥b483 b2790335 ccc610e0 lcdadbb5

Public protocol key

X (48 octets):

c2124432 282c939d 05c603bb deabbld4 cbfd7917 fdOel2a6 ab2lblaa 8111f306
431a3346 29c46973 1lal9le9 0079d441

y (48 octets):
c38f5d0b 66598a18 51996¢32 02716314 87F9405c 25e2ablb abeae68c c2leaeca
60b1e802 a58c5abb 27c0560 2dec587d

DER-encoded ASN.1 (input to the SHA-256 hash) (72 octets):

30463010 06072a86 48ce3d02 0106052b 81040022 03320002 6433bdc3 fd4ee707
d5026c6d f5a9b03a 2e2eb504 8c77697f ae7e2bbb ff7ed370 bf45e7bc 9d781085
87a89ed5 7d94a4b7

DER-encoded ASN.1 base64 for use in the QR code (96 octets):
MEYWEAYHK0Z1zjOCAQYFK4EEAC I DMgACZDO9w/ 105w FVAmxt9amwO 1 4utQSMd21/rn4ru/9+03C/Ree8nXgQhYeontV9IKS3

R-nonce (24 octets):
817bf624 9497caf c9al195b3 45440eff aab05536 8361f6eb

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 151 of 188

Wi-Fi Easy Connect™ Specification v3.0

Shared secrets

Secret M

X (48 octets):

f1fd1304 c0dc4461 £9c9a027 79a53650 b772da6b ab98dc47 lafb236d 41737ddb
788620b1 6a252d60 05938f50 fb3fa3do

y (48 octets):
aB8c6al2d 9dd2fb5b 958481e6 d906l1a44 ead94c04 fa7ce279 a970350d 64fa959e
c9e91f3c 414e4888 bb51979c bf929026

Secret k1l (48 octets):
bd72409d 072e022e 20395d82 fc2bab99 e89d5366 99786163 c481a932 c6aac07?
27b91916 25966eal 3ee786a6 c5f43d23

Secret N

X (48 octets):

4d641389 d480fc87 dbacOf9b cb3eb9b6 e054cch3 3082613 9a7a8634 b51168db
dcadc66f 057b22bf dl1e3376e ed155990

y (48 octets):
16871be5 47d7031a 58c544b5 1ab617d9 406d2b6a 331cclc3 5a268ecO 40e5870e
ea4984b2 fb67d054 2559b3f4 8ddf923e

Secret k2 (48 octets):
c4c7eab8 ab1d8166 d097f217 fe6a3903 058ee477 ccOlcdd5 36f5255a 8F28287c
60da9fc8 253a4ab7 232124bd dc2bflilc

Secret L

X (48 octets):

4884bb3d b417d046 01fdbd4d f1dd3d71 d63a9bla 452be74b 5c3142fe 51591296
5353361f b6fc99ac delc3ad4 b391ffba

y (48 octets):
£3e5e99d b36b13bb cf92454e 440fc506 b6e37alc 31db303c ael22925 3c52feb0
4fb661d4 a272779b 310dcc98 fae50219

Secret ke (48 octets):
2901483 9ecef069 5d96155 d900b684 63265730 7549e0ed f48aadbd 4b302fc8
2ae2230d 9c¢887c3f 5c7aa060 da7606bb

I-auth (48 octets):
a73183e9 4eab589a8 c75238b7 5e390a8f 9ecd880c al5474f7 322e3217 df8d53bf
fbb9cb6al eeffcdbl 7e5b88ac 6fa68551

R-auth (48 octets):
9631d12 38518312 00b29539 21711dd8 b7e07c7d b6e42ad3 bacaedab eba072cO
aa6227e2 618c7bcc 1fba7lcb 08038dcd

XXXX Unknown frame duration (msec)
YYYY Unknown fragment/Sequence number

DPP Auth Request frame from 09:be:56:33:78:c4 to 40:c7:db:3e:74:ba

dOOOXXXX 40c7db3e 74ba09be 563378c4 40c7db3e 74baYYYY 0409506f 9al1a0100
02102000 f20bbbc3 ca7d80c4 04113eba 79516734 47aclf32 6837e04f af5d4645
12b22¥78 01102000 74f8ce71 f3a03b8a 612a599b b9380730 74bf352d 8574638F
6160c58b d7c90laa 03106000 di1b2e632 135a5d77 d3da2la2 71bc0e23 eab9fl1c8
3c83772b f6ea988a 869d0f3b bb066c82 4f8abd4ce 5cl1ld638F ac4f9b73 e4e8d9d4
d88d7el0 43d00577 c15f49a9 5bd921f8 16c946ba 89blfbe9 46e70dlc ebdbcclO
7520a084 b8997a01 a250a2ca 18100200 51010410 31003492 3e0194el 6d11946e

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 152 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

S

H

2c813c9a 6c42e2bd c9755b9c 9dcd950b e48e5b7b 3e8034e5 11e69c90 03d1b29b
5ed5ddcO d40e3b

Fields of the Authentication Request message (with tag and length part omitted)
Auth req fieldl, Responder Bootstrap Hash (32 octets):
f20bbbc3 ca7d80c4 04113eba 79516734 47aclf32 6837e04f af5d4645 12b22f78

Auth req field2, Initiator Bootstrap Hash (32 octets):
741f8ce71 3a03b8a 612a599b b9380730 74b¥352d 8574638F 6160c58b d7c90laa

Auth req field3, Initiator Protocol Key (96 octets):

d1b2e632 135a5d77 d3da2la2 71bc0e23 eab9fl1c8 3c83772b f6ea988a 869d0f3b
bb066c82 4f8ab4ce 5cl1d638F ac4fob73 e4e8d9d4 d88d7el0 43d00577 c15F49a9
5bd921f8 16c946ba 89blfbe9 46e70dlc ebdbccl0 7520a084 b8997a0l1 a250a2ca

Auth req Ffield4, Channel (2 octets):
5101
Auth req field5, Data wrapped with ki1 (49 octets):

34923e01 94e16d11 946e2c81 3c9a6c42 e2bdc975 5b9c9dcd 950bed8e 5b7b3e80
34e511e6 9c9003d1 b29b5ed5 ddc0d40e 3b

DPP Auth Response frame from 40:c7:db:3e:74:ba to 09:be:56:33:78:c4

dOOOXXXX 09be5633 78c440c7 db3e74ba 09be5633 78c4YYYY 0409506f 9ala0101
00100100 00021020 00f20bbb c3ca7d80 c404113e ba795167 3447aclf 326837e0
4faf5d46 4512b22F 78011020 0074f8ce 71f3a03b 8a612a59 9bb93807 3074bf35
2d857463 8f6160c5 8bd7c901 aa091060 00c2f244 32282c93 9d05c603 bbdeabbl
d4cbfd79 17fd0el2 a6ab21bl aa8111f3 06431a33 4629c469 731al9bl1 e€90079d4
41c38f5d 0b66598a 1851996¢c 32027163 1487940 5c25e2ab l1lbabeae6 8cc2leae
ca60ble8 02a58c5a bbf27c05 602dec58 7d041095 00d6d98c 39283F2F 3clc6621
c3ebl1c93 c4b83ba2 19771a32 9bf0487a 0dc3dec3 fe6962cl 8328775 fde89e69
ee4c0107 98b96d7 4da23498 T47b2411 33714ed9 4f6e5al6 71e66eld cede7051
e3b66696 152bc3c2 87263fFd2 ded315d7 fca87411 b4088243 488aae8c 1f2eeab5
44bf47fc 81576740 65ab51c4 a59bcb2f 3bd12flb cablf823 a48ce4d8 243d5fF61
1241c7fe 414ea7ae 35e0

Fields of the Authentication Response message (with tag and length part omitted)
Auth resp fieldO, DPP_Status (1 octets):
00

Auth resp fieldl, Responder Bootstrap Hash (32 octets):
f20bbbc3 ca7d80c4 04113eba 79516734 47aclf32 6837e04F af5d4645 12b22F78

Auth resp field2, Initiator Bootstrap Hash (32 octets):
74f8ce71 f3a03b8a 612a599b b9380730 74b¥352d 8574638F 6160c58b d7c90laa

Auth resp field3, Responder Protocol Key (96 octets):

c2124432 282c939d 05c603bb deabbld4 cbfd7917 fdOel2a6 ab2lblaa 8111F306
431a3346 29c46973 l1lal9ble9 0079d441 c38F5d0b 66598al18 51996c32 02716314
8719405c 25e2ablb a6eae68c c2leaeca 60b1e802 a58cbabb f27c0560 2dec587d

Auth resp field4, Data wrapped with k2 (149 octets):

d6d98c39 283F2f3c 1c6621c3 eblc93c4 b83ba219 771a329b f0487a0d c3dec3fe
6962c18f 328775fd e89e69ee 4c0107F9 8b96d74d a23498F4 7b241133 714ed94f
6e5al1671 e66eldce 4e7051e3 b6669615 2bc3c287 263fd2de d315d7fc a87411b4
08824348 8aae8clf 2eea5544 bf47fc81 57674065 ab5lc4a5 9bch2f3b dil2flbca
b1¥823a4 8ced4d824 3d5f6112 41c7fedl 4ea7ae35 e0

DPP Auth Confirm frame from 09:be:56:33:78:c4 to 40:c7:db:3e:74:ba

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 153 of 188

Wi-Fi Easy Connect™ Specification v3.0

dOOOXXXX 40c7db3e 74ba09be 563378c4 40c7db3e 74baYYYY 0409506f 9ala0102
00100100 00021020 00f20bbb c3ca7d80 c404113e ba795167 3447aclf 326837e0
4faf5d46 4512b22F 78011020 0074f8ce 71f3a03b 8a612a59 9bb93807 3074bf35
2d857463 8f6160c5 8bd7c901 aa041044 000deb27 94291b9f d58b9ad8 303764b9
d96302c5 fla48al8 880c7f32 6b887b51 5661578c 394187be b214931a 141f8ceb
be08694d 18a4725a 83997421 a4400efe 34c81Ff0 a8

Fields of the Authentication Confirm frame (with tag and length part omitted)
Auth conf fieldO, DPP_Status (1 octets):
00

Auth conf fieldl, Responder Bootstrap Hash (32 octets):
f20bbbc3 ca7d80c4 04113eba 79516734 47aclf32 6837e04F af5d4645 12b22F78

Auth conf field2, Initiator Bootstrap Hash (32 octets):
7418ce71 3a03b8a 612a599b b9380730 74b¥352d 8574638F 6160c58b d7c90laa

Auth conf field3, Data wrapped with ke (68 octets):

0deb2794 291b9fd5 8b9ad830 3764b9d9 6302c5F1 a48al1888 0c7f326b 887b5156
61578c39 4187beb2 14931al4 1f8cebbe 08694d18 a4725a83 99742l1a4 400efe34
c81ff0a8

B.4 Test Vectors for DPP Authentication Using P-521 for Mutual Authentication

This section contains test vectors for the DPP Authentication protocol using curve P-521 and mutual authentication.

Curve used: NIST P-521
INITIATOR VALUES
Initiator is: Configurator

I-capabilities (1 octets):
02

Private bootstrapping key (65 octets):

60c10dfl 4af5ef27 f6e362d3 1lbdd9eeb 44be77a3 23ba64b0 8F3F03d5 8b92cbfe
05c182a9 1660caal 8lca3442 43c47b5a a088bcdf 738840eb 35f0218b 9F26881le
02

Public bootstrapping key

x (66 octets):

0114896¢c 5614fc01 e88lab4b cecd6ad46 57cad7cb 655527fe 60ed4el2 a534e442
fda79438 de7bc3a3 450F13fc 53186358 ca2e217f fa4c5624 2e340365 aOcb3481
3281

y (65 octets):

94d9773b b46f66a6 9cc7577e bb83Flc5 7a8d6ac3 0528ad39 869ab74c d23a8e53
7dadleab 1¥39be6e 5d03c6a6 94640a53 dff6f0a4 13ca3l2f 7d54fd56 8F08fFfFa6
80

Private protocol key (66 octets):

019c1c08 caaeec38 th931894 699b095b c3ab8cle c7ef0622 d2e3eba8 21477c8c
6fcadl77 4f21166a d98aebda 37c067d9 aal8aB8a2 elb5c44c 61f2bae0 2a61f85d
9661

Public protocol key

x (65 octets):

7cee6ab3 e28ba817 e348447a 72c4ba5f 671dfacft e53c270d 31F9c9f2 8c982d02
7f2606c2 26c868e 9b136447 8a939fd6 e116b068 aeaa98a9 eee2dl153 b7f46bd6
87

y (66 octets):

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 154 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

S

H

0laa364e 7d6b8d32 cfd43124 dadOeb34 c5b69e3b 9298ad5f cdl1fd04f 6c7fed407
8ae92703 0dde7176 7c3964c2 587e045d 2cd81197 c90ad988 318b9741 OacO2lca
ds3b

DER-encoded ASN.1 (input to the SHA-256 hash) (90 octets):
30583010 06072a86 48ce3d02 0106052b 81040023 03440002 0114896¢c 5614fc01
e88lab4b cecd6a46 57cad7chb 655527fe 60ed4el2 a534e442 fda79438 de7bc3a3
450f13fc 53186358 caze217f fa4c5624 2e340365 alOcb3481 3281

DER-encoded ASN.1 base64 for use in the QR code (120 octets):
MFgWEAYHK0Z1zj OCAQYFK4EEACMDRAACARSJIbFYU/AHogatLzs1gRIFKR8tIVST+YO10EqUOSEL9p5Q43nvDOOUPE/ XTGGNYy 14
hf/pMViQuNANIoMsOgTKB

I-nonce (32 octets):
de972af3 847bec3b a2aedd9f 5c2lcfde c7bfObc5 fe8b276c bcd02678 07Ffbl15b0

RESPONDER VALUES

Responder is: Enrollee that wants to do mutual authentication

R-capabilities (1 octets):
01

Private bootstrapping key (65 octets):

61e54f51 8cdf8597 35da3dd6 4c6f72c2 f086fF4la 6Ffd52915 152ea2fe 0f24ddae
cd888373 0c9c9fd8 2cf7c043 a4102169 6388cf51 90b731dd 83638bcd 56d8b6c7
43

Public bootstrapping key

X (66 octets):

01d38cca 93cef4ct 30c824a7 e4854d03 85ed9bld a87d5f28 1c891e90 1a65f242
328787d3 dfcb257a f6e19577 170fbc58 2fdcdad42 c6a43ff5 16e9036d 8c328ece
73de

y (65 octets):

bb5b69e9 c51dfb23 3757927 b68046d7 7d2al196 bc485142 1d656970 bd221bbe
52e15d3d 1cbac600 629229a0 180a87bd 9d8a834c 750a9e8e 1be9f4cc 9cb0c07d
0

Private protocol key (66 octets):

01d8b7b1 7cdlb0a3 3f7c66fb 42209993 29cdaf4f 8b44b2fF adde8ab8 ed8abffa
9f5358c5 blcaae26 709cadfb 78e52a4d 08F2e4f2 4111a36a 6F440d20 a0000ff5
1597

Public protocol key

x (65 octets):

e2cacdl6 10b7c147 899fbfba 55fdf336 664b80a5 ad4e790ad eablca7b 5ca62641
f25beeda 1974d43a b2eb4626 8972832 80ac7cd2 e2790709 ba7d6ad9 Oceb4fad
04

y (66 octets):

01d59242 92225c0c 220ac340 d1d19219 adc58fdf b9d0d911 dec8201b 513445af
b1a21001 95aelbec e9c21f4f 28a2fe3c 0d828e93 44f6bd43 c8123fc9 d23e2c71
d223

DER-encoded ASN.1 (input to the SHA-256 hash) (90 octets):
30583010 06072a86 48ce3d02 0106052b 81040023 03440002 01d38cca 93cef4cf
30c824a7 e4854d03 85ed9bld a87d5f28 1c891e90 1a65f242 328787d3 dfcb257a
6e19577 170fbc58 2fdcda42 c6a43ff5 16e9036d 8c328ece 73de

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 155 of 188

Wi-Fi Easy Connect™ Specification v3.0

DER-encoded ASN.1 base64 for use in the QR code (120 octets):
MFgWEAYHK0Z 1zj OCAQYFK4EEACMDRAACAdOMypPO9M8BwWYCSN5 I VNA4Xtmx20FV80oH 1 kekBp 18k 1yh4fT38slevbhIXcXD7xYL9z
aQsakP/UW6QNtjDKOznPe

R-nonce (32 octets):
d749a782 012eb0a8 595af30b 2dfc8d08 80d004eb ddb55ecc 5afbdefl 8c400e01

Shared secrets

Secret M

X (65 octets):

8f8147d6 c67169a5 95e083b1l b8fcl56b eaa6d598 9144f08e 31ef6e39 ba87aeb5
4203aa7a ac0905el a7f097f0 cdf038de 106a8032 49c83591 3fbadce9 5cfa30f5
6C

y (66 octets):

01f73a0a d8777d77 f816cc5b e2cd4be7e 81d2ala2 fcde6ceO d05d14d5 fdc21lbf
a0b82259 eb02dcb7 da694d73 6f2e7304 a6dcd95a 57f89clc fd86cc35 7c873883
7f7c

Secret k1 (64 octets):
72a054c6 029bee30 4F280cb0 ab320d66 2fb29e64 b5ba3ee6 c3aececd 72ef528e
b062c596 96efc361 a0O0be8fd 52cf24f3 1d9615be 4efea9la 33df890c 74217217

Secret N

x (66 octets):

01073b08 e838b5a0 c91de7cl ef720ded 72adle6f 6f809d67 494bel62 82672618
b4af8360 b9edec80 5928bb02 efcl90ef b1969668 dfdf6985 13575333 a44265F4
4a22

y (65 octets):

3f4efe29 97991ef0 8f8de717 9e78e58a 803460dd 3995746 2cbe5f93 6e31920d
2c9c8226 237bl5e4 dl1l476l1le2 7456aala 46aef582 efeldl06 25fe4e98 5fFaalael
93

Secret k2 (64 octets):
0e3c6f24 6¢chb2f5d6 5dlcac58 853a32d 300b09b6 Fe49040d £020188c 79cc9676
c3c2719e 2e75f865 733d0a01 44109367 7flbdOe7 24edOc3d e2b89819 a555c3f3

Secret L

X (65 octets):

e002528b 7b9cc8ae fcefbeOd c3c74fe4 7a74d32a 9df82e7b bc22b147 0894cbl9
f4d57eba 935c25c5 af6dOac7 d0058b2e b83623ca 9076fcb7 6331eaeb de5eb557
33

y (66 octets):

010477F3 1978c7a5 6aa63053 f74b22a4 3f5caded 862eb82c 12d0dbOc fc188b23
6af98a48 334356¢ch 8d99d296 9be2f423 1lab9f64c 560b6e58 a97cefel 777ccfle
6803

Secret ke (64 octets):
9fd75668 dabae58b cf93eb6f b38908d5 b26ad5e3 780a76a4 cc720c7b ad443f20f
89add505 8c2b7120 c34adcb4 2e732a03 a7539c4b 04ebf365 23f0cal5 cl10c2a95

I-auth (64 octets):
3b9c1c05 aa79d571 a8712d29 17a72d1f cObd4cac dd83178c bbe2dae7 £45396e9
7a249c90 91352b8a 305f5cad afa038a8 455ab968 10a92a7f 81563646 4b75de05

R-auth (64 octets):
d92bf767 551de8a4 9c7aa7fa ca702725 ¥379371F b37all15F 95df74fe 327cef97

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 156 of 188

Wi-Fi Easy Connect™ Specification v3.0

1a3f0939 1f9ecc96 50b3858b 24e71912 96F714b4 37c02abd 753F2d35 812680d4

XXXX Unknown frame duration (msec)
YYYY Unknown fragment/Sequence number

DPP Auth Request frame from 09:3a:73:7b:79:14 to 6:ff:00:51:4b:e5

dOOOXXXX F6FFf0051 4be5093a 737b7914 F6FF0051 4be5YYYY 0409506F 9a1a0100
02102000 fd6d907d edeeef2d bee967c8 b3ef93e8 0e6e326c c62bOcf6 15599417
3481bcef 01102000 ec42eff4 f213ebec a7alc323 4ae9e51F 3c4d45b4 el3blal?
e73be9a3 883adad6 03108400 007ceeba 53e28ba8 17e34844 7a72c4ba 5f671dfa
cfe53c27 0d31F9c9 28c982d 02712606 c2f26c86 8e9b1364 478a939fF d6el116b0
68aeaa98 a9eee2dl 53b7f46b d6870laa 364e7d6b 8d32cfd4 3124dad0 eb34c5b6
9e3b9298 ad5fcdlf d04f6c7f e4078ae9 27030dde 71767c39 64c2587e 045d2cd8
1197c90a d988318b 97410acO 21cad83b 18100200 51010410 3900c9fc e4f9b89a
02b012b6 9d076c0a a6292361 32216760 dc35e2ed 520d6b15 8d346396 b3815ach
ele335fd 8F7741ed 3l1de2ed4a 9f1le0d58 22759d

Fields of the Authentication Request message (with tag and length part omitted)
Auth req fieldl, Responder Bootstrap Hash (32 octets):
d6d907d edeeef2d bee967c8 b3ef93e8 0e6e326c c62b0cf6 15599417 3481bcef

Auth req field2, Initiator Bootstrap Hash (32 octets):
ec42eff4 f213e5ec a7alc323 4ae9e51fF 3c4d45b4 el3blal7 e73be9a3 883adad6

Auth req Ffield3, Initiator Protocol Key (132 octets):

007ceeba 53e28ba8 17e34844 7a72c4ba 5f671dfa cfe53c27 0d31f9c9 £28c982d
0272606 c2f26c86 8e9b1364 478a939F d6ell6b0 68acaa98 a%eee2dl 53b7F46b
d6870l1laa 364e7d6b 8d32cfd4 3124dad0 eb34c5b6 9e3b9298 ad5fcdlf do4fec7f
e4078ae9 27030dde 71767c39 64c2587e 045d2cd8 1197c90a d988318b 97410acO
21cad83b

Auth req Tfield4, Channel (2 octets):
5101
Auth req field5, Data wrapped with ki1 (57 octets):

c9fced4f9 b89a02b0 12b69d07 6cOaab629 23613221 6760dc35 e2ed520d 6b158d34
6396b381 5acbele3 35fd8f77 4led3lde 2e4a9fle 0d582275 9d

DPP Auth Response frame from f6:ff:00:51:4b:e5 to 09:3a:73:7b:79:14

dOOOXXXX 093a737b 7914f6ff 00514be5 093a737b 7914YYYY 0409506f 9ala0101
00100100 00021020 00fd6d90 7dedeeef 2dbee967 c8b3ef93 eB80e6e32 6cc62b0cC
6155994 173481bc ef011020 00ec42ef f41f213e5 eca7alc3 234ae9e5 1f3c4d45
b4el3bla 17e73be9 a3883ada d6091084 0000e2ca cd1610b7 c147899F bfbas55fd
336664b 80a5ad4e7 90adeabl ca7b5ca6 2641f25b eed4al974 d43ab2eb 4626897
283280ac 7cd2e279 0709ba7d 6ad90ce6 4fad0401 d5924292 225c0c22 0Oac340d1
d19219ad c58fdfb9 d0d9llde c8201b51 3445afbl a2100195 aelbece9 c21f4f28
a2fe3c0d 828e9344 f6bd43c8 123fc9d2 3e2c71d2 230410b5 00eed42a3 7d5304f1
2450e7cc 84acfead 95b5aabc dbef8llc 6623122 9d93f41b 9404f55 0Ob2b2edd
8elbed44d 272fa99b 12874551 1b66d4f6 f4ac6a62 a6258b29 7dfe78ce el36df6c
d60ca7d9 27159840 cl6lcebc 695c0076 b0371344 cOc601bd 2b7b89f5 cfcalfch
1733c573 38238a78 9d526a82 3a621c5b 8F9209bb e94246a3 ab914738 f6d84b6ec
Cc796317b fd3e87c7 e3384028 3e4f5cfc cObca339 b844c065 e7ecf2f9 b5dlbbld
7aa48ece 86e92cf5 7545c3le c721

Fields of the Authentication Response message (with tag and length part omitted)
Auth resp fieldO, DPP_Status (1 octets):
00

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 157 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

Auth resp fieldl, Responder Bootstrap Hash (32 octets):
fd6d907d edeeef2d bee967c8 b3ef93e8 0e6e326c c62b0cf6 15599417 3481lbcef

Auth resp field2, Initiator Bootstrap Hash (32 octets):
ec42eff4 213e5ec a7alc323 4ae9e51f 3c4d45b4 el3blal7 e73be9a3 883adad6

Auth resp field3, Responder Protocol Key (132 octets):

00e2cacd 1610b7cl 47899fbf bab5Ffdf3 36664b80 a5a4e790 adeablca 7b5ca626
41f25bee 4a1974d4 3ab2eb46 2689728 3280ac7c d2e27907 09ba7d6a d90ce64f
ad0401d5 92429222 5c0c220a c340d1dl 9219adc5 8fdfb9d0 d91ldec8 201b5134
45afbla2 100195ae 1bece9c2 1f4f28a2 fe3c0d82 8e9344f6 bd43c812 3fc9d23e
2c71d223

Auth resp field4, Data wrapped with k2 (181 octets):

ee42a37d 5304f124 50e7cc84 acfead95 bSaabcdb ef811c66 23¥1229d 93F41bf9
404f550b 2b2edd8e 1be44d27 2fa99bl2 8745511b 66d4f6f4 ac6a62a6 258b297d
fe78ceel 36df6cd6 Oca7d927 159840cl 61ce6¢c69 5c0076b0 371344c0 c601bd2b
7b89f5cf calfc517 33c57338 238a789d 526a823a 621c5b8F 9209bbe9 4246a3ab
914738f6 d84b6cec7 96317bFd 3e87c7e3 3840283e 4f5cfccO0 bca339b8 44c065e7
ecf2fob5 dlbbld7a a48ece86 e92cf575 45c3lec7 21

DPP Auth Confirm frame from 09:3a:73:7b:79:14 to f6:ff:00:51:4b:e5

dOOOXXXX F6ff0051 4be5093a 737b7914 f6FF0051 4be5YYYY 0409506fF 9ala0102
00100100 00021020 00fd6d90 7dedeeef 2dbee967 c8b3ef93 eB80e6e32 6cc62b0cC
6155994 173481bc ef011020 00ec42ef f41f213e5 eca7alc3 234ae9e5 1f3c4d45
b4el3bla 17e73be9 a3883ada d6041054 00af480c 2580558 343311fd 7550490b
56a3f162 ae980b6b 272c6a56 T3079ae5 3ce213b8 ab6aff52 16e53cl8 217d42cO
ecfl637a 2a4cb4b7 0c0498F0 950a9ccf a9a77c38 a5d10da9 b2f05435 fa05de22
739b7364 77

Fields of the Authentication Confirm frame (with tag and length part omitted)

Auth conf fieldO, DPP_Status (1 octets):
00

Auth conf fieldl, Responder Bootstrap Hash (32 octets):
d6d907d edeeef2d bee967c8 b3ef93e8 0e6e326c c62b0cf6 15599417 3481bcef

Auth conf field2, Initiator Bootstrap Hash (32 octets):
ec42eff4 f213e5ec a7alc323 4ae9e51F 3c4d45b4 el3blal7 e73be9a3 883adad6

Auth conf field3, Data wrapped with ke (84 octets):

af480c25 8055834 3311fd75 50490b56 a3fl62ae 980b6b27 2c6a56F3 079ae53c
e213b8ab 6aff5216 e€53c1821 7d42cOec f1l637a2a 4cb4b70c 0498095 Oa9ccfa9
a77c38a5 d10da9b2 f05435fa 05de2273 9b736477

S

H

B.5 Test Vectors for DPP Authentication Using Brainpool P-256r1 for Mutual Authentication

This section contains test vectors for the DPP Authentication protocol using curve Brainpool P-256r1 and mutual

authentication.

Curve used: Brainpool P-256r1
INITIATOR VALUES
Initiator is: Configurator

I-capabilities (1 octets):
02

Private bootstrapping key (32 octets):

© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 158 of 188

Wi-Fi Easy Connect™ Specification v3.0

8c98dale ebfc33b2 9b6b27bb 73ebe022 2e756elf 77652478 5221c439 5F510e9c

Public bootstrapping key
X (32 octets):
ab8dc118 c37bfleb c9dfa675 af75a8bb 240e1200 b2765547 9e403e08 52elcdb9

y (32 octets):
a655bf70 4d2daac8 81493ae 39ad4e3d4 3bcd2de2 1469b462 0a06dc82 d560f9fa

Private protocol key (32 octets):
Oac1c803 89c7301b 8f1131c5 90a4f945 ad5aach4 1cb107dd eladfh84 5F86c93f

Public protocol key
X (32 octets):
584c980d ad000f25 64679ac8 30a22164 462b56el ade91f5c 69897bab bcc4153F

y (32 octets):
062681bc 3ce67abb 3475028e ¢8524668 d31e708c 8ac762e4 b7ccla8b 9bb3073c

DER-encoded ASN.1 (input to the SHA-256 hash) (60 octets):
303a3014 06072a86 48ce3d02 0106092b 24030302 08010107 03220002 a58dc118
c37bfleb c9dfa675 af75a8bb 240e1200 b2765547 9e403e08 52elcdb9

DER-encoded ASN.1 base64 for use in the QR code (80 octets):
MDowFAYHKoZ 1z jOCAQYJKYQDAW I IAQEHAY | AAQWNwR j De/Hryd+mda91gLskDh 1 AsnZVR55APghS4c25

I-nonce (16 octets):
9836bd12 59f244a5 44c2dfd6 219ec2c8

RESPONDER VALUES

Responder is: Enrollee that wants to do mutual authentication

R-capabilities (1 octets):
01

Private bootstrapping key (32 octets):
5c56e87f 1cfa3722 29b00cda 545cd3e7 44536c2d 03e7109c da895F39 11c44295

Public bootstrapping key
X (32 octets):
a941bd0d 58d439ea 216dc5be f57ac97b 517600cO0 30b186fd 4f20c596 9484920d

y (32 octets):
9af3e82e bl2cdcfd 597920al 8a865cbf 74ec6c5c d4ffd3ca Obed4af9a 1784937b

Private protocol key (32 octets):
a4da6al8 6e26ec71l 5bdf3184 12841e63 2bdd52e8 82529f94 46ad58ab al727815

Public protocol key
X (32 octets):
al544d0c 19108336 1db2c7d4 06abbOel 026f116b 67099121 36cd3cf7 83f5ee7b

y (32 octets):
a02f7c9a ch3e48le 6395722 0197d80d 8563e483 0f95bblb ad99ed62 61c9c955

DER-encoded ASN.1 (input to the SHA-256 hash) (60 octets):
303a3014 06072a86 48ce3d02 0106092b 24030302 08010107 03220003 a941bdod
58d439ea 216dc5be f57ac97b 517600c0 30b186fd 4F20c596 9484920d

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 159 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

DER-encoded ASN.1 base64 for use in the QR code (80 octets):
MDowFAYHK0Z1zjOCAQYJKyQDAwW I IAQEHAY 1AAG61BvQ1Y1Dnq I W3FvvV6YyXtRAgDAMLGG/U8gxZaUhJIN

R-nonce (16 octets):
2e34cacd bf864214 dcOc3b2b c536251b

Shared secrets

Secret M
X (32 octets):
86b40a9c 27d004ee b79d4ea7 el6c04e2 7f46219c FfFe2e74F c0a57722 6d44eel4

y (32 octets):
81fe2bc3 c0d0459b c3a0fldl 362fFfFea7 769a7c2c 2221d09f a98640b2 c219b03d

Secret k1 (32 octets):
afcd814c aba7ddd3 eaabc669 0dl1b28ab 262c3f7b c9f64074 7c2dfeld d2314aaf

Secret N
X (32 octets):
9103edef 5cdd7994 7888f47a 7227308a 83a0lef7 74b8103b 99bclb94 6f6580ee

y (32 octets):
4eb5d3b3 Oela6ff3 03d65b70 172864ce clal2ebla 9a088e56 bb9cc231 117allc9

Secret k2 (32 octets):
ce636a02 f67efd47 fc9341f1 4f015d4d 4a60810c db67clbb 37d8a968 081003b6

Secret L
X (32 octets):
983c085d 65d59086 50320ad4 7e631557 eOeOafd4a dad4bb38 efcd39c3 £73439cH

y (32 octets):
7d23184e 789e77c6 6aa57554 c4fd3eal 4062117 £286ff48 01603133 552f3fle

Secret ke (32 octets):
4a26b8fb 285c53e3 11bae79c b6leaddd 69183e75 ecOe3d4c ba83325F b8Fb7885

I-auth (32 octets):
99b9054a 831f804d2 c27aalfc 2cceeb3e 3faa6790 e5b72db4 6al0c71c bb25c6b0

R-auth (32 octets):
9809505b b3eedb8f 06c87767 58b2elc7 343305b2 2257284 55e86ea6 33d0f6b8

XXXX Unknown frame duration (msec)
YYYY Unknown fragment/Sequence number

DPP Auth Request frame from 2d:cc:e9:ce:31:1d to 3d:9e:49:a3:75:53

dOOOXXXX 3d9e49a3 75532dcc e9ce311d 3d9e49a3 7553YYYY 0409506F 9al1a0100
02102000 63cc6b7a 9312F7c7 a9cl18307 10477d22 c217c590 d98855df 16cd9bl4
17e08a9d 01102000 all769e6 62550e5a 965d36de ccc86205 baf4e65e 824d813e
d59e65d9 71a21c7f 03104000 584c980d ad000f25 64679ac8 30a22164 462b56el
ade91f5c 69897bab bcc4153F 062681bc 3ce67abb 3475028e c¢8524668 d31e708c
8ac762e4 b7ccla8b 9bb3073c 18100200 51010410 29008e56 b6dicb04 b74143b3
db7782e9 4400e6bl cf5b9fda 4e3d128e adf80dfa 6d8f734f 37940d4e 36df64

Fields of the Authentication Request message (with tag and length part omitted)
Auth req fieldl, Responder Bootstrap Hash (32 octets):
63cc6b7a 9312F7c7 a9c18307 10477d22 c217c590 d98855df 16cd9bl4 17e08a9d

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 160 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

Auth req Tfield2, Initiator Bootstrap Hash (32 octets):
all769e6 62550e5a 965d36de ccc86205 baf4e65e 824d813e d59e65d9

Auth req field3, Initiator Protocol Key (64 octets):
584c980d ad000f25 64679ac8 30a22164 462b56el ade91f5c 69897bab
062681bc 3ce67abb 3475028e ¢8524668 d31e708c 8ac762e4 b7ccla8b

Auth req Ffield4, Channel (2 octets):
5101

Auth req field5, Data wrapped with ki1 (41 octets):
8e56b6d1 cb04b741 43b3db77 82e94400 e6blcf5b 9fdade3d 128eadf8
734F3794 0d4e36df 64

DPP Auth Response frame from 3d:9e:49:a3:75:53 to 2d:cc:e9:ce:31:1d

dOOOXXXX 2dcce9ce 311d3d9e 49a37553 2dcce9ce 311dYYYY 0409506F
00100100 00021020 0063cc6b 7a9312f7 c7a9cl183 0710477d 22c217c5
df16cd9b 1417e08a 9d011020 00all769 e662550e 5a965d36 deccc862
5e824d81 3ed59e65 d971a2lc 7091040 00al544d 0c191083 361db2c7
el026f11 6b670991 2136cd3c F783f5ee 7ba02f7c 9acb3ed48 1639572
0d8563e4 830f95bb 1bad99ed 6261c9c9 55041075 0084ece6 7fe9e373
55d5d0b2 39059868 4b069c8e c9f8a2bl 8dd74821 F959b227 4c7c2032
0d317884 e4a226df 7e68d8ef 0b250746 cf6b327e a564172F 5c59d8el
c3c75c6d 71401447 c2db7850 ddOaOafb 8ea633dd l1fe74bda 93aff92a
7619e91a 812dellb 40c7

71a2lc7f

bcc4153F
9bb3073c

0dfa6dsf

9ala0101
90d98855
05baf4e6
d406abb0
20197d8
8lef3ee3
6b¥fd0a30
eaffd50b
5de7eeae

Fields of the Authentication Response message (with tag and length part

Auth resp fieldO, DPP_Status (1 octets):
00

Auth resp fieldl, Responder Bootstrap Hash (32 octets):
63cc6b7a 9312F7c7 a9c18307 10477d22 c217c590 d98855df 16cd9bl4

Auth resp field2, Initiator Bootstrap Hash (32 octets):
all769e6 62550e5a 965d36de ccc86205 baf4eb65e 824d813e d59e65d9

Auth resp field3, Responder Protocol Key (64 octets):
al544d0c 19108336 1db2c7d4 06abb0Oel 026f116b 67099121 36cd3cf7
a02f7c9a ch3e48le 6395722 0197d80d 8563e483 0f95bblb ad99ed62

Auth resp field4, Data wrapped with k2 (117 octets):
84ece67f e€9e37381 ef3ee355 d5d0b239 0598684b 069c8ec9 f8a2bl8d
59b2274c 7c20326b fd0a300d 317884e4 a226df7e 68d8efOb 250746¢cf
64172f5c 59d8elea Ffd50bc3 c75c6d71 401447c2 db7850dd OalOafb8e
e74bda93 aff92a5d e7eeae76 19e91a8l 2dellb40 c7

DPP Auth Confirm frame from 2d:cc:e9:ce:31:1d to 3d:9e:49:a3:75:53

dOOOXXXX 3d9e49a3 75532dcc e9ce311d 3d9e49a3 7553YYYY 0409506fF
00100100 00021020 0063cc6b 7a9312f7 c7a9c183 0710477d 22c217c5
df16cd9b 1417e08a 9d011020 00all769 e662550e 5a965d36 deccc862
5e824d81 3ed59e65 d971a2lc 7041034 00a73706 dd9a9faa 9098178c
71eb21a9 fc7d4252 fd8f2a4c FFObb58F d79fc800 7995f9%ed 90cad7f6
b88eead47 83

17e08a9d

71a21c7f

83f5ee7b
61c9c955

d74821F9
6b327eab
a633ddif

9al1a0102
90d98855
0O5baf4e6
5411087b
588a2577

omitted)

Fields of the Authentication Confirm frame (with tag and length part omitted)

Auth conf fieldO, DPP_Status (1 octets):
00

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 161 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

S

H

Auth conf fieldl, Responder Bootstrap Hash (32 octets):
63cc6b7a 9312F7c7 a9c18307 10477d22 c217c590 d98855df 16cd9bl4 17e08a9d

Auth conf field2, Initiator Bootstrap Hash (32 octets):
all769e6 62550e5a 965d36de ccc86205 bafd4e65e 824d813e d59e65d9 71a2lc7f

Auth conf field3, Data wrapped with ke (52 octets):
a73706dd 9a9faa90 98178c54 11087b71 eb2la9fc 7d4252fd 8f2adcff Obb58fd7
9fc80079 95f9ed90 cad7f658 8a2577b8 8eead783

B.6 Test Vectors for DPP Authentication Using Brainpool P-384r1 for Mutual Authentication

This section contains test vectors for the DPP Authentication protocol using curve Brainpool P-384r1 and mutual
authentication.

Curve used: Brainpool P-384r1
INITIATOR VALUES
Initiator is: Configurator

I-capabilities (1 octets):
02

Private bootstrapping key (48 octets):
566a411b 69d543f4 4ef5e99a 3beeblb5 6d7d40bf 4bb14f07 63ebl2c4 c9265a3a
flaf1014 09c47b8c bb95e425 79b65aa8

Public bootstrapping key

X (48 octets):

4210736 b9205383 al6e342f fdealb46 2a39F89f cf5e6715 8bcbe636 64b15d81
04122ad8 50al71bf acc53095 3aabl1232

y (48 octets):
08827cb1l 68d9e9a6 2b5a53d3 e6ebe60e 2b052492 92b9b939 e64f26al 340afelf
67377d44 44a6e811 e8cb6ac3 a39ef56e

Private protocol key (48 octets):
5a9a24d4 8cclc804 c4e7fe33 5ca393aa 0a283eed aeOa5bd7 103eal089 152b1469
9294c7e4 403339bf 3593548 3c2d8ade

Public protocol key

X (48 octets):

18074104 8efc3fda 687376cd cccbal88 9cd49d30 8F360blb 9110c098 0fd5382b
b832340d 9d9f4665 05c07901 39da939%e

y (48 octets):
6123577c 8ce43a2b efb130dd b7dl8baa d10452a8 2ee613d0 0d548211 5bb92f8f
eafaed45e 475fd7e6 3daOc03b b8laf5a8

DER-encoded ASN.1 (input to the SHA-256 hash) (76 octets):

304a3014 06072a86 48ce3d02 0106092b 24030302 0801010b 03320002 4210736
b9205383 al6e342f f4ealb46 2a39f89F cf5e6715 8bchbe636 64b15d81 04122ad8
50a171bf acc53095 3aab1232

DER-encoded ASN.1 base64 for use in the QR code (104 octets):
MEowFAYHK0Z 1zjOCAQYJKyQDAwI 1AQELAZ 1AAK8hBza5 1 FODoW40L/TqGOYqOFifz15nFYVL5jZksV2BBBIq2FChcb+sxTCVOqgs
SMg==

I-nonce (24 octets):
4a8ec264 9c76a056 64fa5ada 5bOb9ae3d 9aad4f991 13112b42

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 162 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

RESPONDER VALUES

Responder is: Enrollee that wants to do mutual authentication

R-capabilities (1 octets):
01

Private bootstrapping key (48 octets):
6a9f80chb 3a06364f bbec3cdd 3d3ee394 fedbel3f 52df0088 3cac9512 c67e9dea
933dfe86 006e1d97 2d5d646a d9071b30

Public bootstrapping key

X (48 octets):

5d27fbd1l 9dcdebcc c43f9cbl ce9cf448 edlbddd6 5Fe65b88 a20307a9 318092b8
54b4ac24 ae0d6d7f caSebce2 6bf47bac

y (48 octets):
1565778 7218d3f6 ab236948 4ed3b5F7 c0795556 9825990a 29975869 99fb7bf2
6d37bf26 789294d4 920ee9ef 46698154

Private protocol key (48 octets):
69807ec8 al0l6faee 99eab39b fe2cl4d0 012bf651 0b83f101 1d981F97 d2f26d34
ed137f24 bflb61lb F2F7e075 4blb3c48

Public protocol key

X (48 octets):

6f428a34 f0c8c6f8 473fe277 6feccd3b ch939724 4d40341e fe6a7e82 a840d209
a6aab6352 e7497841 67980F78 889fel25

y (48 octets):
8ad0b71b 5ce8a82e ddB82cc25 74b3aa09 458c565F 8c44b89c 3ba439d8 c674535a
a781b217 1fae45d5 67820486 0131baSb

DER-encoded ASN.1 (input to the SHA-256 hash) (76 octets):

304a3014 06072a86 48ce3d02 0106092b 24030302 0801010b 03320002 5d27fbdl
9dcdebcc c43f9cbl ce9cf448 ed4lbddd6 5Fe65b88 a20307a9 318092b8 54b4ac24
ae0d6d7f cabebce2 6bf47bac

DER-encoded ASN.1 base64 for use in the QR code (104 octets):
MEowFAYHKoZ 1zjOCAQYJKyQDAWI TAQELAZ 1AAION+9GdzevMxD+csc6cIEJkGIO3WX+Zb i KIDB6kxgJIK4VLSSIKANbX/KXrzia/R
TrA==

R-nonce (24 octets):
d09389c9 addblc6l 07d34661 6561b038 971FF93a a23a4807

Shared secrets

Secret M

X (48 octets):

81c5537b b3910f91 ae2d5573 96dldcftb 2f487ded 06¥7802F 90fb3551 6623799f
577e5fde 586590aa 7f8f5c8b 768leadb

y (48 octets):
7¥361a72 78acc5bd 27d410d8 079a3bf5 f075a994 addd2035 47022345 05c00al19
781c28cd ac467aed4 6c588dc2 969147bc

Secret k1 (48 octets):
89cae8d9 97fcOchbc 862b1988 8c32alef ef7920f1 b3328b36 9343004 86cdd405
29ca639f e8e4dfd4 454e31e6 21b373b3

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 163 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

Secret N

X (48 octets):

54166d62 2569683fF 0c58ele3 a8360afc b80a6916 c22fac25 4230b781 fa35ddbb
8ba4a30f b8f72f39 41ac5725 7d9bb536

y (48 octets):
11220edb 1e0c907e 249bceOb 2e4d270e c1811091 adf47a9c 85154303 dflal0755
1117759c 71893ab6 0f45a55c 20c5ad4c

Secret k2 (48 octets):
b0746152 3eb24433 9c2bfle2 c9705267 d696cad9b 4blchf08 9a594f8e 10aldal2
3c6d5c65 128del07 daa8a74d 472e23ec

Secret L

X (48 octets):

2a89a960 1ad05871 4b9f2420 755581ab 9162a439 32544139 18094lab f0a5a529
6199546b 06e7ce30 a5c8cdea 656da397

y (48 octets):
0816Fa24 4f91a726 Fd94359d ccaaelb3 1c0601b5 b93187fc 4341683 e482ddbf
62cf1039 d7514238 a8673d5c 8d350e6

Secret ke (48 octets):
b3c43409 9bl1f3a78 5cacech5 9b73abe6 b5f6eldc F5cd6486 21313936 e8aa5f9c
79af5712 d32f274e 72adbld8 4146c¢73e

I-auth (48 octets):
e2fle7d6 5626af05 2c9e3b81 0665e632 c5alf053 18b98d93 44e5a2a9 61478eld
947fb389 ae89b5a3 e9f7fbec 73f64e24

R-auth (48 octets):
f77008c8 78b038ec 6188cbef 7e7c8dad4 fa37eccft 00f5b565 d5aeb446 8ech2770
cc7e2993 4de202dc 8af28a95 afbe8d90

XXXX Unknown frame duration (msec)
YYYY Unknown fragment/Sequence number

DPP Auth Request frame from 90:90:fb:08:80:f4 to 91:53:4b:5a:18:5b

dOOOXXXX 91534b5a 185b9090 fb0880f4 91534b5a 185bYYYY 0409506f 9a1a0100
02102000 32f774e7 97dd46dc a33bbd36 26ce83a7 3e6d3241 660b4f6e d8c29f9c
cecadell 01102000 96a90fb8 90438970 55a7fc88 a9029d25 d5e45d77 b76343el
48a4e7f5 7cce98c7 03106000 18074104 8efc3fda 687376cd cccbhal88 9cd49d30
8f360blb 9110c098 0fd5382b b832340d 9d9f4665 05c07901 39da939e 6123577c
8ce43a2b efb130dd b7dl8baa d10452a8 2ee613d0 0d548211 5bb92f8f eafaed5e
475fd7e6 3da0c03b b8laf5a8 18100200 51010410 31007247 c976e94a 8e912ceb
646d3e71 1515ecb0 969c6573 c993850F 029alb2a 261bd9b4 £77d0d00 71562d52
2e5b3bad 78d554

Fields of the Authentication Request message (with tag and length part omitted)
Auth req Tfieldl, Responder Bootstrap Hash (32 octets):
32f774e7 97dd46dc a33bbd36 26ce83a7 3e6d3241 660b4f6e d8c29f9c cecadell

Auth req Tfield2, Initiator Bootstrap Hash (32 octets):
96a90fbh8 90438970 55a7fc88 a9029d25 d5e45d77 b76343el 48a4e7f5 7cce98c7

Auth req field3, Initiator Protocol Key (96 octets):

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 164 of 188

Wi-Fi Easy Connect™ Specification v3.0

18074104 8efc3fda 687376cd cccbal88 9cd49d30
b832340d 9d9f4665 05c07901 39da939e 6123577c

81360b1b 9110c098
8ce43a2b efb130dd

d10452a8 2ee613d0 0d548211 5bb92f8f eafaed5e 475Fd7e6 3da0c03b
Auth req field4, Channel (2 octets):

5101

Auth req Field5, Data wrapped with ki1 (49 octets):

7247c976 e94a8e91 2ceb646d 3e711515 ecb0969c
d9b4f77d 0d007156 2d522e5b 3bad78d5 54

6573c993 8501029a

DPP Auth Response frame from 91:53:4b:5a:18:5b to 90:90:fb:08:80:f4

dOOOXXXX 9090fb08 80149153 4b5al185b 9090fb08
00100100 00021020 0032f774 e797dd46 dca33bbd
6ed8c29f 9ccecade 11011020 0096a90f b8904389
77b76343 el48ade7 f57cce98 c7091060 006f428a
3bcb9397 244d4034 lefeb6a7e 82a840d2 09a6aa63
258ad0b7 1b5ce8a8 2edd82cc 2574b3aa 09458c56
5aa781b2 171fae45 d5678204 860131ba 9b041095
8b8ffaf4 bbc87502 9fa2230f 48901b32 0b428bab
c03a6497 46ac4lad 9d8e8el8 aclb72al d26clc2c
dda4f0e6 b57ae6d3 d4d8446d a7539af9 7b0f16f0
81b2a86e 495db29d 6e15470c 8422a905 f4716cf2
3fcdad42f 7265ca26 lecb

80F4YYYY 0409506F
3626ce83 a73e6d32
7055a7fc 88a9029d
3410c8c6 8473fe2
52e74978 4167980F
5¥8c44b8 9c3ba439
00d049e5 83507147
d0539589 94aab7al
47a30718 efafc8le
7183207e b46476e2
851794dd d6a571bd

0fd5382b
b7d18baa
b8laf5a8

1b2a261b

9ala0101
41660b4F
25d5e45d
776Fecc4
78889fel
d8c67453
cf0e32bl
1fc4a8f6
8fc86ff1l
82d4bcdc
2d37f0dc

Fields of the Authentication Response message (with tag and length part
Auth resp fieldO, DPP_Status (1 octets):

00

Auth resp fieldl, Responder Bootstrap Hash (32 octets):

32F774e7 97dd46dc a33bbd36 26ce83a7 3e6d3241

660b4f6e d8c29f9c

Auth resp field2, Initiator Bootstrap Hash (32 octets):

96a90fb8 90438970 55a7fc88 a9029d25 d5e45d77

b76343el 48a4e7f5

Auth resp field3, Responder Protocol Key (96 octets):

6f428a34 f0c8c6f8 473fe277 6feccd43b ch939724
abaab352 e7497841 67980f78 889fel25 8adOb71b
458c565F 8c44b89c 3ba439d8 c674535a a781b217

4d40341e fe6a7e82
5ce8a82e dd82cc25
1fae45d5 67820486

Auth resp field4, Data wrapped with k2 (149 octets):

d049e583 507147cf 0e32bl18b 8ffaf4bb c875029f
53958994 aab7allf c4a8f6cO0 3a649746 ac4lad9ad
a30718ef afc81e8f c86ffldd a4fOe6b5 7ae6d3d4
83207eb4 6476e282 d4bcdc81 b2a86e49 5db29d6e
1794ddd6 a571bd2d 37f0dc3f cdad42f72 65ca26le

a2230f48 901b320b
8e8el8ac 1b72ald2
d8446da7 539af97b
15470c84 22a905f4
cb

DPP Auth Confirm frame from 90:90:fb:08:80:f4 to 91:53:4b:5a:18:5b

dOOOXXXX 91534b5a 185b9090 fb0880f4 91534b5a
00100100 00021020 0032fF774 e797dd46 dca33bbd
6ed8c29f 9ccecade 11011020 0096a90f b8904389
77b76343 el48ade7 t57cce98 c7041044 00998434
94aaacfa a2312ff2 lec9c8a4 7d5d457b fc43a0fd
b7ada854 994ba6ff 08a0e559 744076de fa00085c

185bYYYY 0409506F
3626ce83 a73e6d32
7055a7fc 88a9029d
d066887f 84855822
21f3e203 70b9eabd
15

cecadell

7cce98c7

a840d209
74b3aa09
0131bagb

428ba6d0
6clc2c4a7
0f16f071
716cf285

9al1a0102
41660b4f
25d5e45d
4ee3992d
f70f5bb9

omitted)

Fields of the Authentication Confirm frame (with tag and length part omitted)
Auth conf fieldO, DPP_Status (1 octets):

00

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 165 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

S

H

Auth conf fieldl, Responder Bootstrap Hash (32 octets):
32F774e7 97dd46dc a33bbd36 26ce83a7 3e6d3241 660b4f6e d8c29f9c cecadell

Auth conf field2, Initiator Bootstrap Hash (32 octets):
96a90fh8 90438970 55a7fc88 a9029d25 d5e45d77 b76343el 48ade7f5 7cce98c7

Auth conf field3, Data wrapped with ke (68 octets):

998434d0 66887184 8558224e €3992d94 aaacfaa2 312ff2le c9c8ad47d 5d457bfc
43a0fd21 f3e20370 b9eabdf7 Of5bb9b7 ada85499 4ba6ff08 a0e55974 4076defa
00085c15

B.7 Test Vectors for DPP Authentication Using Brainpool P-512r1 for Mutual Authentication

This section contains test vectors for the DPP Authentication protocol using curve Brainpool P-512r1 and mutual
authentication.

Curve used: Brainpool P-512r1
INITIATOR VALUES
Initiator is: Configurator

I-capabilities (1 octets):
02

Private bootstrapping key (64 octets):
75de2b05 Oaad76f4 86102FfF0 893dc921 cf2d2789 56ca854b 3613c477 e7df8edb
95208150 4a06319c 5733beb9 c606flla 5252d6f4 9aeOlbe7 adae87f2 9616f71c

Public bootstrapping key

X (64 octets):

0dbcOef6 6dc19112 dd25e55b 2231807F 7db13558 8d7d9263 0c523b0Oa 797a506f
c07530dc 98fFlel2f 9cea3646 2aa7c309 c7ab9079 548b0Occb 6bfa00c7 eleb3514

y (64 octets):
23574a94 4f31344e 31b70ceb 31de4554 c5d55c2a f66b8ae0 4b5ac329 5aa9c454
b99640a7 93f1046a b12059d2 4632fale fc7044bc 11a56b64 96930918 6df3a40d

Private protocol key (64 octets):
83ea32cl 4e739e00 d1193476 78de24c8 c4e802d8 c2180b0Oe 3ch30f6c 50322433
81169500 1460bad3 49deabld c64611d3 4eaa8679 694880 a558ab3c c4edel9e

Public protocol key

X (64 octets):

6e560390 43dc3855 eb2fed6a 0504d45F b74l1aldd 1fa32da3 451d90d6 b3292bd4
db7fbfb0 5babaabc 525dldbc c43eec94 67laa764 1cc43086 11382fbe 59f239a4

y (64 octets):
0621ad8f b3ec87a4 e2531175 2f45ac76 50d18cf3 ed5b4fb7 9993758d acbdd5e2
873a1127 7bf41167 b4409df4 3d206478 946d302e 9e57ba8e 3clbfce8 3a3e53a4

DER-encoded ASN.1 (input to the SHA-256 hash) (92 octets):

305a3014 06072a86 48ce3d02 0106092b 24030302 0801010d 03420003 0dbcOef6
6dc19112 dd25e55b 2231807f 7db13558 8d7d9263 0c523b0Oa 797a506f c07530dc
98f1el2f 9ceal3646 2aa7c309 c7ab9079 548b0ccb 6bfa00c7 eleb3514

DER-encoded ASN.1 base64 for use in the QR code (124 octets):
MFowFAYHKo0Z1zjOCAQYJKyQDAwW I IAQENAO IAAW28DVZtwZES3SXIWy I xgH99sTVY j X2SYwxSOwp5e IBvwHUW3J j x4S+c6 j ZGKgF
DCcerkHIUiwzLa/oAXx+HrNRQ=

I-nonce (32 octets):
8a8613e4 722fbadl 77877799 cef3ch3b 6aec9039 357039e0 ec7bb9bf 8bc2f508

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 166 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

RESPONDER VALUES

Responder is: Enrollee that wants to do mutual authentication

R-capabilities (1 octets):
01

Private bootstrapping key (64 octets):
a41b1891 ccOedee0 fa94706d a543ae74 004f02c6 2cb69af8 4e421e62 8elb6447
859b63b3 3eh668FfF 2ee2d111 e6f52181 9ab03dlb b7de0963 1203fe5F 36a7bl61l

Public bootstrapping key

X (64 octets):

5846111d d314f1fb 04db37cb 2625b8e0 0Obc63beb 28b4a050 5faedc88 5ea79879
50f5fac6 aa322458 13975d01 f30b4f74 14a9845e bd629d3c 6c21744d e540447e

y (64 octets):
91f8hbd29 3e9922d8 c514978d ffba8f9e 02236dcf 59eec5f7 5fa6fb7f 26c9c3dc
c433c716 b8389c7f 9c758f8e 74126¢c76 36fc8a2a b126bd3f 245133ee 1cd579ca

Private protocol key (64 octets):
05b5ea50 7f73f786 2338fc6e c2edf822 6cd04868 501F97f7 b296fe0f 70584af7
26763ce 27cd178b 7f51037a ae28f8e7 ddb94a23 899eedc6 62410858 119e86a3

Public protocol key

X (64 octets):

59Ff3517 3fe2775b ecbecfaa ca27b426 813d0624 6d9elc84 b2fe8428 c23a8el4d
9b7368F9 c48fc85b faflee76 56497333 18eeffbb d32c6225 864b21cO0 2¥96042c

y (64 octets):
06e4e4d0 d8b89dd2 ceclfl188 995aeca5 b5a06431 9de5e806 af56a64d 8cc282d6
2ec29f76 cf2ecf43 ab5f0215 01a065fe 21bc9412 7cf3f7ce 102bb196 94f2195e

DER-encoded ASN.1 (input to the SHA-256 hash) (92 octets):

305a3014 06072a86 48ce3d02 0106092b 24030302 0801010d 03420002 5846111d
d314f1fb 04db37cb 2625b8e0 Obc63beb 28b4a050 5faedc88 5ea79879 50f5fac6
aa322458 13975d01 f30b4f74 14a9845e bd629d3c 6c21744d e540447e

DER-encoded ASN.1 base64 for use in the QR code (124 octets):
MFOWFAYHK0Z 1Zj OCAQYJKyQDAwI IAQENAO I AALhGER3TFPH7BNs3yyY TUOALX j vrKLSgUF+u31hep5h5UPX6xqoyJFgT110B8wt
PABSphF69Yp08bCFOTeVARH4=

R-nonce (32 octets):
bb0f2be0 7496d7e5 3d3b9f92 ae9812fb 43b5ffad4 666e3b09 bb2100ac 73036F8F

Shared secrets

Secret M

x (64 octets):

5256Fd25 019d6ceb afbc4959 ce938a50 F7029a26 e07efd28 fdd97e75 c89flad4
ea893e5b 517e72a4 963e49fc 1e33abb9 lec9fa94 7d868d4d e80b291f 6f62aabl

y (64 octets):
500915df 4e826a4f 045ecfdc 6c46a729 6¢721859 4d6a2b01 324244e9 32aa97b8
3e2f748b 6823fFed6 9a91F9f2 53F90c58 402773d5 ba3cbffb d720b3f8 5ad535db

Secret k1 (64 octets):
c63caef9 e712e36e e072d788 bce03170 9eadc766 7c545086 43569b48 cO0f3589b
72541bb6 98e5bd5b 2f727ca0 68aecfbf fa66b308 25fh4180 e€24c7934 34ccf570

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 167 of 188

Wi-Fi Easy Connect™ Specification v3.0

Secret N

X (64 octets):

4b75dc91 6e6b67e2 d82a4b00 1c6b2f9a 52e06440 975cc62a 1cOc7dfa 2b8111a0
2c3b800a 0213e199 bc984bb5 b90e5c6c 3F829d74 3e729e28 9e349efa b749f7db

y (64 octets):
022e29ef 8d57fa03 b429a236 a6493958 cf2b8e7c baa61852 545bfb80 31900214
671a6351 841fda64 968623 ddeldllf f213eda8 32eab6f9 6148d886 bb72c847

Secret k2 (64 octets):
4af21ca9 c8120811 d916d323 ed30dc5b 14910002 e8a7261d af536cd4a 6cbc5b96
731104b6 4effe300 ab6bfdc52 756F2Fc2 bc566376 b66ca8a9 045df235 e60ccada

Secret L

X (64 octets):

8c3bcaf5 d22ch885 e3ab3089 6a889a66 8b305689 94ad03bf 63e0ad2f e8b70320
6c7d7745 25aalc57 cb7020a4 7fec89bb 21560b25 ff8de2ce fe208e86 2F668db3

y (64 octets):
978b0501 0c056ed5 a52e0c77 41772350 95b18d2f 0c080e67 7fd6821c fh42e827
7bafb058 71787d90 6e0b7fa9 ed5f5b04 d6édbafbb F530FFFf fc40d47F 7149al4d

Secret ke (64 octets):
53e2b730 ¢3800783 8d4c8c4a 1461355F 57825832 ced461c25 3103fc8b 1889620
258b5fc2 80287d95 edlde769 8b945be7 39ab411f d3ae7eb4 2810b4dl 96c0e28b

I-auth (64 octets):
2535b781 b73acde3 439abf0d 3cl42b2d 296FfcObf 14e70759 af66f7c4 3cda5a76
e5d63add 2e37d009 8e8adl4c f6dad4ala 3b95d998 222a4556 d12422bl 46895216

R-auth (64 octets):
be263f28 a5b2efd5 63c2002e 834de6ad 6bebbc59 e2f4466F 3b3106ac cOfFf633f
7a4e4c80 f4778d06 dbf76cee 74e4c568 bb94doff 88F4c8ab d02cO5cf 18e55b7a

XXXX Unknown frame duration (msec)
YYYY Unknown fragment/Sequence number

DPP Auth Request frame from 95:f6:79:0f:a7:a2 to a5:15:97:5a:83:93

dOOOXXXX a515975a 839395f6 790fa7a2 a515975a 8393YYYY 0409506f 9al1a0100
02102000 fadf2e5F 2e0a6937 c9d2954d b578a373 2012673 606F13d3 2c727a85
9864c2ff 01102000 0da6b62c cdbl6ab5b 6ef47954 792936¢c e5lab5e2 1a963al4
2dab3415 aca65af7 03108000 6e560390 43dc3855 eb2fed6a 0504d45f b74laldd
1fa32da3 451d90d6 b3292bd4 db7fbfb0O 5babaabc 525dldbc c43eec94 671aa764
1cc43086 11382fbe 59f239a4 0621ad8f b3ec87a4 e2531175 2f45ac76 50d18cf3
ed5b4fb7 9993758d acbdd5e2 873al1127 7b¥41167 b4409df4 3d206478 946d302e
9e57baB8e 3clbfce8 3a3e53a4 18100200 51010410 3900b207 36544885 ad55e5el
fa65f59d e522a539 4e7783d3 5a2d8daa d185a837 72edffb5e e8eafa80 b425224F
ce990e52 a5e308bc 8641d44d a23aff

Fields of the Authentication Request message (with tag and length part omitted)
Auth req fieldl, Responder Bootstrap Hash (32 octets):
fadf2e5F 2e0a6937 c9d2954d b578a373 2012673 606F13d3 2c727a85 9864c2ff

Auth req field2, Initiator Bootstrap Hash (32 octets):
0da6b62c cdbl6a5b 6ef47954 792936cc e5lab5e2 1a963al4 2dab3415 aca65af7

Auth req Ffield3, Initiator Protocol Key (128 octets):

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 168 of 188

S

H

Wi-Fi Easy Connect™ Specification v3.0

6e560390
db7fbfb0
0621ad8f
873a1127

Auth req
5101

Auth req
b2073654
ff5ee8ea

43dc3855
5babaabc
b3ec87a4
7bf41167

field4,
field5,

4885ad55
fa80b425

eb2fed6a 0504d45F b74l1aldd 1fa32da3 451d90d6
525d1dbc c43eec94 671aa764 1cc43086 11382fbe
e2531175 2f45ac76 50d18cf3 ed5b4fb7 9993758d
b4409df4 3d206478 946d302e 9e57ba8e 3clbfce8

Channel (2 octets):
Data wrapped with ki1 (57 octets):

ebelfa65 59de522 a5394e77 83d35a2d 8daadl85
224fce99 0Oe52a5e3 08bc8641 d44da23a Ff

DPP Auth Response frame from a5:15:97:5a:83:93 to 95:6:79:0f:a7:a2

dOOOXXXX
00100100
d32c727a
e2la963a
26813d06
3318eeff
a5b5a064
fe21bc94
2e597717
8cab43a0
e5a909c5
88ee0770
cbb96297
2721f9dc

95f6790f
00021020
859864c2
142dab34
246d9elc
bbd32c62
319de5e8
127cf3f7
1ec90791
197bfedf
be600897
65ed2159
4cefcech
c03ea9d1l

a7a2a515 975a8393 95F6790F a7a2YYYY 0409506F
00fadf2e 5f2e0a69 37c9d295 4db578a3 732f0126
011020 000da6b6 2ccdbl6a 5b6ef479 54792936
15aca65a 7091080 0059ff35 173fe277 5Sbecbecf
84b2fe84 28c23a8e 149b7368 f9c48fc8 Sbfaflee
25864b21 c02f9604 2c06ed4e4 d0d8b89d d2ceclfl
0O6af56a6 4d8cc282 d62ec29f 76cf2ect 43ab5f02
cel02bbl 96941219 5e0410b5 00558356 9cd212ca
5d4bdfe3 38c0de67 FOF77341 eeb07434 9bc363b3
08c288a5 444c96de fl1df5a29 20b74612 b4e5361le
7890c30a 40fead7e d8f57a65 56833eeb 08337abc
falee88b 024871fd 935c8la3 ab819ea7 d452a449
9dad3e85 337db150 c5755ed9 ad4f72c2c 61d57bdf
7795

b3292bd4
59f239a4
acbdd5e2
3a3e53a4

a83772ed

9ala0101
73606F13
cceblab5
aaca27b4
76564973
88995aec
1501a065
0d7bbela
6141b06¢C
121603c3
6ab557daf
b5eff576
c70e99fa

Fields of the Authentication Response message (with tag and length part
Auth resp fieldO, DPP_Status (1 octets):

00

Auth resp fieldl, Responder Bootstrap Hash (32 octets):

fadf2e5F

2e0a6937

Auth resp field2,

0da6b62c

cdbl6a5b

Auth resp field3,

593517
9b7368T9
06e4e4d0
2ec29f76

3fe2775b
c48fc85b
d8b89dd2
cf2ecf43

Auth resp field4,

5583569c
b074349b
b74612b4
833eeb08
819ea7d4
f72c2c61

d212ca0d
c363b361
e5361el2
337abcba
52a449b5
d57bdfc7

€9d2954d b578a373 2012673 606f13d3 2c727a85

Initiator Bootstrap Hash (32 octets):
6ef47954 792936¢c e5lab5e2 1a963al4 2dab3415

Responder Protocol Key (128 octets):

ecbecfaa ca27b426 813d0624 6d9elc84 b2fe8428
faflee76 56497333 18eeffbb d32c6225 864b21cO
ceclf188 995aeca5 b5a06431 9de5e806 af56a64d
ab5f0215 0l1a065fe 21bc9412 7cf3f7ce 102bb196

Data wrapped with k2 (181 octets):
7bbela2e 5977171e c907915d 4bdfe338 c0de67f0
41b06c8c ab43a019 7bfe4f08 c288a544 4c96defl
1603c3e5 a909c5be 60089778 90c30a40 fead7ed8
557daf88 ee077065 ed2159fa 0ee88b02 4871fd93
eff576¢cb b962974c efcec59d ad3e8533 7db150c5
0e99fa27 21f9dccO 3ea9dl177 95

DPP Auth Confirm frame from 95:f6:79:0f.a7:a2 to a5:15:97:5a:83:93

dOOOXXXX
00100100
d32c727a
e2la963a
32ec7f3b
7565679d

ab15975a
00021020
859864c2
142dab34
48f5fcc2
2cd4e406

839395f6 790fa7a2 a515975a 8393YYYY 0409506F
00fadf2e 5f2e0a69 37c9d295 4db578a3 7320126
011020 000da6b6 2ccdbl6a 5b6ef479 54792936
15aca65a 7041054 00fcfa09 ec6bcOdc 4129533
flabd42c 8be48all 94b4adbc adad25b9 2b¥f88b37
e38aaecd 958a593f 27034838 3f28e131 b93c3abe

9864c2ff

aca65af7

c23a8el4
2¥96042c
8cc282d6
94f2195e

f77341ee
df5a2920
f57a6556
5c8la3ab
755ed9a4

9ala0102
7360613
cceblabs
e795bae0
66915706
b85cec81

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 169 of 188

omitted)

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

S

H

3d72b020 42

Fields of the Authentication Confirm frame (with tag and length part omitted)
Auth conf fieldO, DPP_Status (1 octets):
00

Auth conf fieldl, Responder Bootstrap Hash (32 octets):
fadf2e5F 2e0a6937 c9d2954d b578a373 2012673 606F13d3 2c727a85 9864c2ff

Auth conf field2, Initiator Bootstrap Hash (32 octets):
0da6b62c cdbl6a5b 6ef47954 792936cc eb5lab5e2 1a963al4 2dab3415 aca65af7

Auth conf field3, Data wrapped with ke (84 octets):

fcfa09ec 6bc0dc4f 129533e7 95bae032 ec7f3b48 f5fcc2fl abd42c8b e48al194
b4adbcad ad25b92b 88b3766 9570675 65679d2c d4e406e3 8aaecd95 8a593f27
0348383f 28e131b9 3c3a5eb8 5cec813d 72b02042

B.8 Enterprise Provisioning Test Vectors

This section contains test vectors for the DPP Configuration protocol using Enterprise credentials. Whitespace has been
added to some JSON output for readability. The added white space is not allowed in the value of a CSR Attributes
Request, "pkcs10" attribute, CSR, or "certBag" attribute.

B.8.1 Configurator

wait for the enrollee to start the configuration protocol....
got a GAS_INITIAL_REQUEST. ..

got a DPP config request!

the json: { "name'":"boxy", "wi-fi_tech”":"infra", "netRole":"ap"}
there are 1 result(s) for "name®: boxy

there are 1 result(s) for "netRole": ap

provisioning enterprise credentials but no CSR

adding 102 byte CSR Attributes Request
MEKGCSgGS1b3DQEJBzASBgcghkjOPQIBMQCcGBSUBBAAIMB4GCSqGS 1b3DQEJIDjERBgNVBAUGCOMSIomT8 i XKAQUGCCqGSM49BAM
D

sending a GAS_INITIAL_RESPONSE dpp config frame

got a GAS_INITIAL_REQUEST...
got a DPP config request

the json: { "name'":"boxy", "wi-fi_tech":"infra", "netRole":"ap",

"pkcs10™:""MI 1BrDCCATECAQAWDZENMASGALUEAWWEYm94e TB2MBAGBYqGSM49AgEGBSUBBAAT A2 1 ABNb1skZ46EY FPMWOMb44X
z3TOLeGNuVu0zZgbDzv/vK0/ jCE46ECUN9Q6XMY7Ww/mShIPWs7g3gjyvbNzAaQjNB/8LBEZz9FIhT7K4vEFXEDXxmzMKoKCXCFPVTpl
DwbdEMmh+aCBo jA3Bgkqhk i GOwOBCQ4xK jAoMBIGALUEBQQLUOLFUINILTCcONZQWEQYKCZ ImiZPyLGQBBQQEYmVIcjBnBgkghki
GOWOBCQcxWgxYVjFrSksyVFIBNm5Z0XVsWHZORUxyNGNPcOVhaXQ3WEVmYVdLUGXhMNVWVZzNEM1JEc2pzeFpuNEZmdOtMc2NYc3
ZXR1Z3WVExa3RpTXINYUIJa3NENKEOPTAKBggqhk j OPQQDAWNPADBmMA JEAIWZ10TTAPEPZdskPCCZThWAT9/4RB/x4ueSia8hlt
nmFxbwWJ6nWyoNnVKIXGI9JAJEA/csjh7Ckq0G7QWUzRWPHUNhj/wAJ2U//0onBJeqGFRVGMFr j90aJ8ssBliMcl 1SIwx

}

send 585 byte PKCS10 to CA!
sending a GAS_INITIAL_RESPONSE dpp config frame

got a GAS_COMEBACK_ REQUEST (we"re still pending)...
sending a GAS_COMEBACK_RESPONSE dpp config frame

got a GAS_COMEBACK_REQUEST (we"re still pending)...
sending a GAS_COMEBACK_RESPONSE dpp config frame

got a GAS_COMEBACK REQUEST (we"re still pending)...
sending a GAS_COMEBACK_RESPONSE dpp config frame

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 170 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

got a 1755 byte PKCS7 from CA!
adding 2752 byte config object for dotlx to heygetoffmylawn

got a GAS_COMEBACK_REQUEST...
sending a GAS_COMEBACK_RESPONSE dpp config frame

got a GAS_COMEBACK_REQUEST. ..
sending a GAS_COMEBACK_RESPONSE dpp config frame

got a GAS_COMEBACK_REQUEST...
sending a GAS_COMEBACK_RESPONSE dpp config frame

got a CONFIG_RESULT. ..
processing dpp config result
peer has successfully been provisioned!

B.8.2 Enrollee

start the configuration protocol....
beginning DPP Config protocol
sending a GAS_INITIAL_REQUEST dpp config frame

got a GAS_INITIAL_RESPONSE. ..
got a DPP config response!

Configurator said we need a CSR to continue...

CSR Attributes Request:

MEKGCSqGS 1b3DQEJBzASBgcqhkjOPQIBMQcGBSUBBAATMBAGCSGS 1b3DQEJD j ERBgNVBAUGCOMSIomT8 i XxkAQUGCCqGSM49BAM
D

a SEQUENCE OF
a nid for challengePassword
a SEQUENCE OF attributes...
nid for ecPublicKey
a SET OF elliptic curve
nid for secp384ri
a SEQUENCE OF attributes...

a SET OF extension request:
nid for serial number
nid for favorite drink

nid for ecdsa with sha384

CSR is 585 chars:

M1 1BrDCCATECAQAWDZENMASGALIUEAWWEYM94eTB2MBAGBYqGSM49AgEGBSUBBAATA2 1ABNb1skZ46EY FPMWIMb44Xz3TOLeGNuV
u0ZqbDzv/vKO0/ jCE46ECUN9Q6XMY7w/mShIPWs7q3gjyvbNzAaQjNB/8LBEz9FIhTf7K4vFXEDXmzMKoKCXCFPVTplDbwbdEMmh+a
CBojA3BgkghkiGOw0OBCQ4xK jAoMBIGALIUEBQQLUOLIFUINILTCONZQWEQYKCZ ImiZPyLGQBBQQEYmVIcjBnBgkghkiGOwOBCQcxW
gXYV]jFrSksyVFIBNm5Z0OXVsSWHZORUxyNGNPcOVhaXQ3WEVmMYVdLUGXhMnVWVzNtM1JIEc2pzeFpuNEZmdOtMc2NYCc3ZxXR1Z3WVEX
a3RpTXINYUI1Ja3NENKE9PTAKBggghk j OPQQDAWNPADBMAJEAIWZ10TTApEPZdskPCCZThWAT9/4RB/ x4ueSia8hltnmfxbwWJl6n
WyoNnVKIXGI9JAJEA/csjh7Ckq0G7QWUzRWPHUNhj/wAJ2U//0onBJeqGFRVGMFr j90aJ8ssBliMcl 1SIwx

sending a GAS_INITIAL_REQUEST dpp config frame
got a GAS_INITIAL_RESPONSE. ..
comeback delay is 1000

sending a GAS_COMEBACK_REQUEST dpp config frame
got a GAS_COMEBACK_RESPONSE. ..
told to come back in 1000 TUs

sending a GAS_COMEBACK_REQUEST dpp config frame
got a GAS_COMEBACK_RESPONSE. . .
told to come back in 1000 TUs

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 171 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

sending a GAS_COMEBACK_REQUEST dpp config frame
got a GAS_COMEBACK_RESPONSE. ..
told to come back in 1000 TUs

sending a GAS_COMEBACK_REQUEST dpp config frame

got a GAS_COMEBACK_RESPONSE. ..

getting another 1300 fragment, total so far is 1300
ask for next fragment

sending a GAS_COMEBACK_REQUEST dpp config frame

got a GAS_COMEBACK_RESPONSE. . .

getting another 1300 fragment, total so far is 2600
ask for next fragment

sending a GAS_COMEBACK_REQUEST dpp config frame
got a GAS_COMEBACK_RESPONSE. . .

getting another 201 fragment, total so far is 2801
final fragment, 2801 total

got a DPP config response!

Configuration object:

{"wi-Fi_tech":"infra","discovery":{"ssid":"heygetoffmylawn"},

“cred'":{"akm":"dotlx","entCreds" :{''certBag":

“"MI1FCwYJKoZ IhveNAQcCol IE/DCCBPgCAQEXADALBgkghk i GOwWOBBwWGgggTeMI ICIDCCAaqgAw I BAg1UBgMglIHjyof9orrj5A08
+ZmB4 jw/UwCgY 1KoZ I zj OEAWMwaTELMAKGA1UEBhMCVVMxCzAJBgNVBAgTAKNBMRcwFQYDVQQHEWSMYSBTZWXx2YSBCZWF jaDEeM
BWGALUEChMVVGh I 1E1uZHVzdHIpYWwgTG91bmd IMRQWEgYDVQQDEwWtUaGUgQm91bmNIcjAeFwOyMDALIMjAXNjAyMDlaFwOzMDAL
MTgxNjAyMD 1aMGkxCzAJBgNVBAYTAIVTMQswCQYDVQQ I EwJDQTEXMBUGALUEBXMOTGEgU2VsdmEgQmVhY2gxHjAcBgNVBAOTFVR
0ZSBJbmR1c3RyaWFs I ExvdW5nZTEUMB IGALUEAXMLVGh I IEJvdW5 j ZX Iwd JAQBgcghkjOPQIBBgUrgQQAIgNiAARo1Jj ITGhSQy
22r2Lj iRcB6pTd4K+HO+tp6U/PS/hcL1lybbQXruFOba8d+rru9ncUm44 jKoOnuxmkbOw9eypNI811SdBYet7 iR+BtFh2sFhhOUUE
JQsXEDp2QHd1QIgyfOjEzZARMABGA1IUdEWEB/WQFMAMBAT8wWCgY IKoZ 1zj OEAWMDaAAWZQ I xAlkhly68MuhbujO/ 1e0TGb60vVuUOt
QG/s8VaoPrkHQ6FJuJNPOc9toj tAzp lwiPRKvwIwSYs9kxEgRaC4Zb0jywiXM8C1bdG08B8gU6+hyNF3KZZAnXRKMTL3Tg95rj5
ZLYnmMI ICsjCCAjegAwIBAgIBFTAKBggghkjOPQQDAZzBpMQswCQYDVQQGEWJIVUzZELMAKGALUECBMCQOEXFzAVBgNVBACTDkxhIF
NIbHZhI1EJ1'YWNoMR4wHAYDVQQKEXxVUaGUgSW5kdXNOcm lhbCBMb3VuzZ2UxFDASBgNVBAMTC1R0ZSBCb3VuY2VyMBAXDT IWMDYyN
TIyNTc10FoXDTMwMDYyMz I yNTc10FowDzENMASGALUEAWWEYm94eTB2MBAGBY(qGSMA9AgEGBSUBBAATA2 I ABNb1skZ46EYFPMWO
Mb44Xz3TOLeGNuVu0ZqbDzv/vKO0/ jCE46ECUN9Q6XMY7w/mShIPWs7q3gjyvbNzAaQ jNB/8LBEZz9FIhT7KAvFXEDXxmzMKoKCxXCF
PVTp1DwbdEMmh+aOCAQswggEHMAKGA1UdEWQCMAAWCWYDVROPBAQDAgWgMBMGA1UdJIQQMMAOGCCsGAQUFBWMCMBOGA1UdDgQWBB
TkFhA73mFYSB5SVcwFAXEN7IXKGTCBKAYDVROJBIGIMIGFoW2kazBpMQswCQYDVQQGEwWJVUzELMAKGALUECBMCQOEXFzAVBgNVB
AcTDkxhIFNIbHZhIEJ1YWNoMR4wHAYDVQQKEXxVUaGUgSW5kdXNOcmIhbCBMb3VuZ2UxFDASBgNVBAMTC1R0ZSBCb3VuY2VyghQG
AyqUePKh/2uuPkDTz5mYHiPDOTASBgNVBAUECLINNRVJITSCO3NDcOMB IGCgmSJomT8 i xkAQUEBGJIIZXIwCgY I1KoZ 1zjOEAwWMDaQA
wZg I xAMydHgh9fFItMPX9MPRs/ 1/Hi101gG93Q16 1KaOrwytVCh/okQgvL I tFTng5JtPnx75g I xANOiutL IRtQcEVhaoJhQzXPsMc
XAuczDdUvWo670tTZhx5dFu+SBSYLXpBbagf05/aEAMQA=""},
"signedConnector':"eyJ0eXAi0iJkcHBDb24iLCIraWQiOi I5el IRN1UOalVBcXhHcG1JcGIPNGADNUVER2pXxM1JIKSHZRCEIW
TzBIWEpjJ liwiYWxnljoiRVMzODQi fQ.eyJIncm91lcHMiOlt7 Imdyb3VwSWQiOiJIpbnRIcmOwl iwibmVOUmM9sZS16ImFwinldLCIu
ZXRBY2NIc3NLZXkiOnsia3R51 JoiRUMILCIJcnYi0O1JQLTIANI IsIngiOiJFfOUdzN3FrOUNsODd1dVZia3Y1XzluUnhkXOINSE9
tUEFwazNPUI85T1VrliwieS1611ZRSzd0c1ZkUF8wU3Q5UGdZT2ZLWEYOMzctd IBOQKRQcXpOaXI3RTVpbW8iLCIraWQiOiJHT1
1KSkd3ZGd jOXdwbVR6VF 10eERKQWNGeTQxOGky TXBCYXFUVOMtY1dvInOsImvV4cGlyeS161j IwMjEEMDUEMVUMj IGNTYEMj i F
Q.TF20axqprqg82QZ9qec-UwMi 1 18bVUO1dSedD4T8n8ZcTKXgQYFi 1QpB8yyKsMICGXhkDXtLA6GKHSxuXfUIVOQOFfRa5BeQST
SM-g3MFKNeMU3mhdPCpUXFt9B3Y6p6m3™,

“csign"{"kty":"EC","crv':""P-384",

X" ""K9MO-qd__Y69e5Pdn7Rs7E_bwwP04 1 9GDUEOEBIrdTRT3g1AK8Q7XL-Kgplibrun™,

"y"" - ""OME5C4DM7CKEDNKBROYEYXx92bxqxZV46qtS j TZUsmM89pS-FPXuYxuioR5UWIGXE",
"kid":""9zYQ7U4kUAgxGpi 1 pi04gC5EDGjq3RIHVQp 1VOOUXJc™},

"expiry':"2021-05-25T22:56:22"}}

No caCerts in DPP Config response for dotilx!
got a p7 with 2 certs in it

checking certificate 0
certificate issued to /C=US/ST=CA/L=La Selva Beach/0=The Industrial Lounge/CN=The Bouncer
certificate issued by /C=US/ST=CA/L=La Selva Beach/0=The Industrial Lounge/CN=The Bouncer

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 172 of 188

Wi-Fi Easy Connect™ Specification v3.0

S

H

certificate 0 verified!

checking certificate 1

certificate issued to /CN=boxy

certificate issued by /C=US/ST=CA/L=La Selva Beach/0=The Industrial Lounge/CN=The Bouncer
certificate 1 verified!

"dotlx® AKM with SSID heygetoffmylawn

connector is signed with ES384, by key with key id:

9zYQ7U4KUAgXGpi I pi04gC5EDGJ g3RIHVQP 1VOOUXJc

configurator™s signing key is valid!!!

connector:
eyJOeXAi0iJkcHBDb24iLCIraWQiOi 15el IRN1UOalVBcXhHcG1JcGIPNGADNUVER2pxM1JKSHZRCEIWTZzBIWEp] I iwiYWxnl jo
iRVMzODQifQ.eyJIncm91cHMiOlt7 Imdyb3VwSWQiOiJpbnRIcmOwl iwibmVOUM9sZS16 ImFwIn1dLCIuZXRBY2N1c3NLZXkiOns
1a3R51joiRUMILCIjcnYiOiJQLTIINi IsIngiOiJfOUdzN3FrOUNsODd1dVZia3Y1XzlUUnhkXOINSE9QtUEFwazNPUI85T1Vr1i
wieSI1611ZRSzd0c1ZkUF8wU3Q5UGdZT2ZLWEYOMzctd IBOQKRQcXpOaX 13RTVpbW8iLCIraWQiOi JHT1IKSkd3ZGd jOXdwbVR6EV
F10eERKQWNGeTQxXOGKyTXBCYXFUVOMtY1dvInOsImvV4cGlyeS161j IwMjEEMDUEMjVUMj I6NTY6BMj 11 Q. F20aXqgprg82QZ9qEc
-UwMi 118bVUO1dSedD4T8n8ZcTKXgQY Fi 1QpB8yyKsMICGXhkDXtL46GKHSXuXFUIVOQOTRa5BeQSTSM-
g3MFKNeMU3mhdPCpUXFt9B3Y6p6jm3

with SSID heygetoffmylawn
got valid connector with dotlx config

sending dpp config result

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 173 of 188

)

Wi-Fi Easy Connect™ Specification v3.0

;! 3

Appendix C Role-specific Elements for PKEX

C.1 Role-specific Elements for NIST p256

unsigned char nist_p256_initiator_x_coord[32] = {
0x56, 0x26, 0x12, Oxcf, 0x36, 0x48, Oxfe, OxOb,
0x07, 0x04, Oxbb, 0x12, 0x22, 0x50, O0xb2, 0x54,
Oxbl, 0x94, 0x64, Ox7e, 0x54, Oxce, 0x08, 0x07,
Ox2e, Oxec, Oxca, 0x74, Ox5b, 0x61, 0x2d, 0x25

}:

unsigned char nist_p256_initiator_y_coord[32] = {
0x3e, 0x44, Oxc7, 0xc9, 0x8c, Oxlc, Oxal, OxOb,
0x20, 0x09, 0x93, 0xb2, Oxfd, Oxe5, 0x69, Oxdc,
0x75, Oxbc, Oxad, 0x33, Oxcl, Oxe7, Oxc6, 0x45,
0Ox4d, 0x10, Oxle, Ox6a, 0x3d, 0x84, 0x3c, Oxa4

}:

unsigned char nist_p256_responder_x_coord[32] = {
Oxle, Oxad4, Ox8a, Oxbl, Oxad4, 0xe8, 0x42, 0x39,
Oxad, Ox73, Ox07, Oxf2, 0x34, Oxdf, Ox57, 0x4f,
0xc0, 0x9d, 0x54, Oxbe, 0x36, Ox1lb, 0x31, OxOfF,
0x59, 0x91, 0x52, 0x33, Oxac, 0x19, 0x9d, O0x76

}:

unsigned char nist_p256_responder_y_coord[32] = {
0xd9, Oxfb, Oxf6, 0xb9, Oxf5, Oxfa, Oxdf, 0x19,
0x58, 0xd8, Ox3e, 0xc9, 0x89, Ox7a, 0x35, 0Oxcl,
Oxbd, 0xe9, OxOb, 0x77, Ox7a, Oxcb, 0x91, Ox2a,
0Oxe8, 0x21, Ox3f, 0x47, 0x52, 0x02, 0x4d, 0x67

}:
C.2 Role-specific Elements for NIST p384

unsigned char nist_p384_initiator_x_coord[48] = {
0x95, O0x3f, 0x42, 0x9%e, 0x50, Ox7f, Oxf9, Oxaa,
Oxac, Oxla, Oxf2, 0x85, Ox2e, 0x64, 0x91, 0x68,
0x64, 0Oxc4, 0x3c, Oxb7, Ox5c, Oxf8, Oxc9, 0x53,
Ox6e, 0x58, Ox4c, Ox7f, Oxc4, 0x64, O0x61, Oxac,
0x51, 0x8a, Ox6f, Oxfe, Oxab, 0x74, Oxe6, 0x12,
0x81, Oxac, 0x38, 0x5d, 0x41, Oxe6, 0xb9, Oxa3

}:

unsigned char nist_p384 initiator_y_coord[48] = {
0x76, Ox2f, Ox68, 0x84, Oxa6, Oxb0O, 0x59, 0x29,
0x83, 0xa2, Ox6c, Oxad4, Ox6c, 0x3b, OxF8, 0x56,
0x76, 0x11, Ox2a, 0x32, 0x90, Oxbd, 0x07, 0xc7,
0x37, 0x39, 0x9d, Oxdb, 0x96, OxF3, O0x2b, 0xb6,
0x27, Oxbb, 0x29, 0x3c, 0x17, 0x33, 0x9d, 0x94,
0Oxc3, Oxda, Oxac, 0x46, Oxb0, 0x8e, 0x07, 0x18

}:

unsigned char nist_p384_responder_x_coord[48] = {
Oxad, Oxbe, 0xd7, 0Oxl1ld, Ox3a, O0x71, O0x64, 0x98,
Ox5Ff, Oxb4, Oxd6, Ox4b, 0x50, 0xdO, 0x84, 0x97,
Ox4b, 0x7e, O0x57, 0x70, Oxd2, 0xd9, OxFf4, 0x92,
Ox2a, Ox3Ff, Oxce, 0x99, Oxch5, 0x77, 0x33, 0x44,
0x14, 0x56, 0x92, Oxcb, Oxae, 0x46, 0x64, Oxdf,
0xe0, Oxbb, 0xd7, Oxbl, 0x29, 0x20, 0x72, Oxdf

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 174 of 188

Wi-Fi Easy Connect™ Specification v3.0

}:

unsigned char nist_p384_ responder_y_coord[48] = {
Oxab, Oxa7, Oxdf, 0x52, Oxaa, Oxe2, 0x35, 0xOc,
0Oxe3, 0x75, 0x32, 0xe6, Oxbf, 0x06, 0xc8, Ox7c,
0x38, 0x29, Ox4c, Oxec, 0x82, Oxac, 0Oxd7, Oxa3,
0x09, 0xd2, OxOe, 0x22, Oxb5a, 0x74, 0x52, Oxal,
Ox7e, 0x54, Ox4e, Oxfe, Oxc6, 0x29, 0x33, 0x63,
0x15, Oxel, Ox7b, 0Oxe3, 0x40, Oxlc, Oxca, 0x06

}:
C.3 Role-specific Elements for NIST p521

unsigned char nist_p521 initiator_x_coord[66] = {

0x00, 0x16, 0x20, 0x45, 0x19, 0x50, 0x95, 0x23,
0x0d, 0x24, Oxbe, 0x00, 0x87, Oxdc, Oxfa, OxfO,
0x58, 0x9a, 0Ox01, 0x60, 0Ox07, Ox7a, Oxca, 0x76,
0x01, Oxab, 0Ox2d, Ox5a, 0x46, Oxcd, 0Ox2c, 0Oxb5,
0x11, Ox9a, Oxff, Oxaa, 0x48, 0x04, 0x91, 0x38,
Oxcf, 0x86, Oxfc, Oxad4, Oxab, OxOf, O0x47, 0x01,
0x80, Ox1lb, 0x30, 0Oxa3, Oxae, 0xe8, Oxlc, Ox2e,
Oxea, Oxcc, Oxf0, 0Ox03, Ox9f, 0x77, Ox4c, 0x8d,
0x97, 0x76

}:

unsigned char nist_p521 initiator_y_coord[66] = {

0x00, Oxb3, O0x8e, 0x02, Oxe4, 0Ox2a, 0x63, 0x59,
0x12, Oxc6, 0x10, Oxba, Ox3a, Oxf9, 0x02, 0x99,
O0x3f, 0x14, Oxf0, 0x40, Oxde, Ox5c, 0xc9, 0x8b,
0x02, 0x55, Oxfa, 0x91, Oxbl, Oxcc, Ox6a, Oxbd,
Oxe5, 0x62, 0xcO, Oxc5, 0xe3, Oxal, Ox57, Ox9f,
0x08, Oxla, Oxa6, Oxe2, Oxf8, 0x55, 0x90, Oxbf,
Oxf5, Oxa6, 0Oxc3, 0xd8, 0x52, 0x1f, Oxb7, 0x02,
0Ox2e, 0x7c, 0xc8, 0xb3, 0x20, Oxle, 0x79, 0x8d,
0x03, 0xa8

};

unsigned char nist_p521 responder_x_coord[66] = {

0x00, 0x79, Oxe4, 0x4d, Ox6b, Ox5e, 0x12, 0OxOa,
0x18, 0x2c, Oxb3, 0x05, Ox77, OxOf, Oxc3, 0x44,
Oxla, Oxcd, 0Ox78, 0x46, 0x14, Oxee, 0x46, Ox3fF,
Oxab, 0xc9, 0x59, 0x7c, 0x85, 0xa0, 0Oxc2, Oxfb,
0x02, 0x32, 0x99, Oxde, 0Ox5d, Oxel, Ox0d, 0x48,
0x2d, 0x71, Ox7d, 0x8d, Ox3Ff, 0x61, Ox67, 0Ox9e,
0x2b, 0x8b, 0x12, Oxde, 0x10, 0x21, 0Ox55, OxOa,
Ox5b, 0x2d, Oxe8, 0x05, 0x09, Oxf6, 0x20, 0x97,
0x84, 0Oxb4

¥

unsigned char nist_p521 responder_y_coord[66] = {

0x00, 0x46, 0x63, 0x39, Oxbe, Oxcd, Oxa4, 0x2d,
Oxca, 0x27, Ox74, 0xd4, Oxlb, 0x91, 0x33, 0x20,
0x83, 0xc7, O0x3b, Oxa4, 0x09, 0x8b, 0Ox8e, 0xa3,
0x88, 0xe9, 0x75, Ox7f, O0x56, 0x7b, 0x38, 0x84,
0x62, 0x02, Ox7c, 0x90, Ox51, 0x07, Oxdb, 0xe9,
0xd0, Oxde, Oxda, Ox9a, Ox5d, Oxe5, 0x94, 0Oxd2,
Oxcf, 0x9d, Ox4c, 0x33, 0x91, Oxa6, Oxc3, 0x80,
Oxa7, Ox6e, Ox7e, 0x8d, Oxf8, 0x73, Ox6e, 0x53,
Oxce, Oxel

};

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 175 of 188

=

gj_i

H

Wi-Fi Easy Connect™ Specification v3.0

S

H

C.4 Role-specific Elements for Brainpool p256r1

unsigned char brainpool_p256_initiator_x_coord[32] = {
0x46, 0x98, 0x18, 0x6c, 0x27, Oxcd, Ox4b, 0x10,
0x7d, 0x55, Oxa3, Oxdd, 0x89, Ox1f, Ox9f, Oxca,
0Oxc7, 0x42, Ox5b, 0x8a, 0x23, Oxed, Oxf8, 0x75,
Oxac, Oxc7, O0xe9, 0x8d, Oxc2, Ox6f, Oxec, 0xd8

}:

unsigned char brainpool _p256_initiator_y coord[32] = {
0x93, Oxca, Oxef, 0xa9, 0x66, 0x3e, 0x87, Oxcd,
0x52, Ox6e, 0x54, 0x13, Oxef, 0x31, O0x67, 0x30,
0x15, 0x13, 0x9d, 0Ox6d, OxcO, 0x95, 0x32, Oxbe,
0x4f, Oxab, 0x5d, Oxf7, Oxbf, Ox5e, Oxaa, O0xO0b

¥

unsigned char brainpool_p256_responder_x_coord[32] = {
0x90, 0x18, 0x84, 0xc9, Oxdc, Oxcc, Oxb5, Ox2F,
Ox4a, Ox3f, Ox4f, 0x18, OxOa, 0x22, 0x56, Ox6a,
0xa9, Oxef, Oxd4, Oxe6, Oxc3, 0x53, Oxc2, Oxla,
0x23, 0x54, Oxdd, 0x08, Ox7e, 0x10, Oxd8, Oxe3

}:

unsigned char brainpool _p256_responder_y coord[32] = {
Ox2a, Oxfa, 0x98, 0x9b, Oxe3, Oxda, 0x30, Oxfd,
0x32, 0x28, Oxcb, 0x66, Oxfb, 0x40, Ox7f, Oxf2,
Oxb2, 0x25, 0x80, 0x82, 0x44, 0x85, 0x13, Ox7e,
Ox4b, 0Oxb5, 0x06, 0xcO, 0x03, 0x69, 0x23, 0x64

};
C.5 Role-specific Elements for Brainpool p384r1

unsigned char brainpool_p384_ initiator_x_coord[48] = {
Ox0a, 0Ox2c, Oxeb, 0x49, 0Ox5e, 0xb7, 0x23, 0Oxbd,
0x20, 0Ox5b, Oxe0, 0x49, Oxdf, Oxcf, Oxcf, 0x19,
0x37, 0x36, Oxel, Ox2f, 0x59, Oxdb, 0x07, 0x06,
Oxb5, Oxeb, 0x2d, Oxae, Oxc2, Oxb2, 0x38, 0x62,
Oxa6, 0Ox73, 0x09, OxaO, 0Ox6c, OxOa, Oxa2, 0x30,
0x99, Oxeb, Oxf7, Oxle, 0x47, 0xb9, Ox5e, Oxbe
};

unsigned char brainpool _p384_initiator_y coord[48] = {
0x54, 0x76, 0x61, 0x65, 0x75, Ox5a, Ox2f, 0x99,
0x39, 0x73, Oxca, Ox6c, OxFf9, Oxf7, Ox12, 0x86,
0x54, 0xd5, Oxd4, Oxad, 0x45, Ox7b, Oxbf, 0x32,
Oxee, 0x62, O0x8b, Ox9f, 0x52, 0xe8, Oxal0, 0xc9,
Oxb7, 0x9d, Oxdl, 0x09, Oxb4, 0x79, Oxlc, Ox3e,
Oxla, Oxbf, 0x21, 0x45, 0x66, Ox6b, 0x02, 0x52

}:

unsigned char brainpool_p384_ responder_x_coord[48] = {
0x03, Oxa2, 0x57, Oxef, Oxe8, 0x51, O0x21, 0xaO0,
0xc8, 0x9%e, 0x21, 0x02, Oxb5, 0x9a, 0x36, 0x25,
0x74, 0x22, Oxdl, O0xf2, Oxlb, Oxa8, 0x9a, 0x9b,
0x97, Oxbc, Ox5a, Oxeb, 0x26, 0x15, 0x09, 0x71,
0x77, 0x59, Oxec, 0x8b, Oxb7, Oxel, Oxe8, Oxce,
0x65, 0xb8, Oxaf, O0xF8, 0x80, Oxae, 0x74, 0x6¢C

}:

unsigned char brainpool _p384_responder_y coord[48] = {
0x2f, 0xd9, Ox6a, 0Oxc7, O0x3e, Oxec, 0x76, 0x65,

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 176 of 188

Wi-Fi Easy Connect™ Specification v3.0

0x2d, 0x38, Ox7f, Oxec, 0x63, 0x26, Ox3Ff, 0x04,
0xd8, Ox4e, Oxff, Oxel, OxOa, 0Ox51, O0x74, 0x70,
Oxe5, 0x46, 0x63, Ox7f, Ox5c, 0OxcO, Oxdl, Ox7c,
Oxfb, Ox2f, Oxea, Oxe2, O0xd8, OxOf, 0x84, Oxcb,
0Oxe9, 0x39, Ox5c, 0x64, Oxfe, Oxcb, 0x2f, Oxfl

};
C.6 Role-specific Elements for Brainpool p512r1

unsigned char brainpool_p512_ initiator_x_coord[64] = {
Ox4c, 0xe9, Oxb6, Oxlc, Oxe2, 0x00, 0x3c, 0x9c,
Oxa9, 0xc8, 0x56, 0x52, Oxaf, 0x87, 0x3e, 0x51,
0x9c, Oxbb, 0x15, 0x31, Oxle, Oxcl, 0x05, Oxfc,
Ox7c, Ox77, Oxd7, 0x37, Ox61, 0x27, OxdO, 0x95,
0x98, Oxee, 0x5d, Oxad4, 0x3d, 0x09, Oxdb, 0x3d,
Oxfa, 0x89, 0x9%e, Ox7f, Oxa6, Oxa6, O0x9c, Oxff,
0x83, 0Ox5c, 0x21, Ox6c, O0x3e, OxF2, Oxfe, Oxdc,
0x63, Oxe4, Oxdl, OxOe, 0Ox75, 0x45, 0x69, OxOf

¥

unsigned char brainpool_p512_ initiator_y coord[64] = {
0x50, Oxb5, O0x9b, Oxfa, 0x45, 0x67, Ox75, 0x94,
0x44, 0Oxe7, 0x68, 0xb0O, Oxeb, 0x3e, 0xb3, 0xb8,
0xf9, 0x99, 0x05, Oxef, Oxae, Ox6c, Oxbc, 0xe3,
Oxel, 0xd2, Ox51, 0x54, Oxdf, 0x59, 0Oxd4, 0x45,
0x41, 0Ox3a, 0xa8, OxOb, 0x76, 0x32, 0x44, 0xOe,
0x07, 0x60, Ox3a, Ox6e, Oxbe, Oxfe, OxeO0, 0x58,
0x52, 0Oxa0, Oxaa, Ox8b, 0xd8, Ox5b, Oxf2, 0x71,
0x11, Ox9a, Ox9e, 0x8f, Oxla, Oxdl, 0Oxc9, 0x99

}:

unsigned char brainpool_p512 responder_x_coord[64] = {
Ox2a, 0x60, 0x32, 0x27, Oxal, Oxe6, 0x94, 0x72,
Oxlc, 0x48, Oxbe, 0xc5, Ox77, 0x14, 0x30, 0x76,
Oxe4, Oxbf, Oxf7, 0x7b, Oxc5, OxFfd, Oxdf, 0x19,
Oxle, OxOf, Oxdf, Oxlc, 0x40, Oxfa, 0x34, 0x9e,
Ox1f, 0x42, 0x24, 0xa3, O0x2c, 0Oxd5, Oxc7, 0xc9,
Ox7b, 0x47, 0x78, 0x96, OxFfl, 0x37, OxOe, 0x88,
Oxcb, Oxa6, 0x52, 0x29, Oxd7, Oxa8, 0x38, 0x29,
0Ox8e, Ox6e, 0x23, 0x47, 0xd4, Ox4b, 0x70, Ox3e
}:

unsigned char brainpool p512 responder_y coord[64] = {
0x80, Ox1f, 0x43, 0xd2, Ox17, 0x35, Oxec, 0x81,
0xd9, 0Ox4b, Oxdc, 0x81, 0x19, 0xd9, Ox5F, 0x68,
0x16, 0x84, Oxfe, 0x63, Ox4b, 0x8d, 0Ox5d, Oxaa,
0x88, 0Ox4a, 0x47, 0x48, 0xd4, Oxea, Oxab, 0x7d,
Ox6a, Oxbf, Oxel, 0x28, 0x99, Ox6a, 0x87, 0Oxlc,
0x30, Oxb4, 0x44, 0x2d, Ox75, Oxac, 0x35, 0x09,
0x73, 0x24, 0x3d, Oxb4, 0x43, Oxbl, Oxcl, 0x56,
0x56, Oxad, 0x30, 0x87, Oxf4, 0xc3, 0x00, Oxc7

}:

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 177 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

Appendix D PKEX Test Vector for NIST p256

D.1 Initial State of Initiator and Responder

Initiator MAC address: ac:64:91:f4:52:07
Responder MAC address: 6e:5e:ce:6e:¥3:dd

code identifier: "joes_ key"
password: "thisisreallysecret”

Initiator bootstrapping keys

bootstrapping private key:
5941b51a cfc702cd c1c34726 4beb2920 db88ebla 0bf03a21 1868b163

bootstrapping public key

A.X:

0ad58864 754c8126 85Ff3a52 a573cld7 2c72c4eb ed98F391 5622d4df

Aly:

7e81429a ac49ddec 75ad6521 db9c7407 4e30b5eb 2ba53693 c9341b79

Responder bootstrapping keys

bootstrapping private key:
28e89562 93149986 b6d0b816 9a86805d 9232babb 5f6813fd fe96f19d

bootstrapping public key

B.x:

977b7fa3 9779a814 29febbl2 eldc5e20 a7e017c4 bc743709 0e57c966

B.y:

9d2b6273 39476397 63F64c7b 6708cle0 857becb7 e24fcl95 248b5b06

D.2 Initiator Generates PKEX Exchange Request frame

identifier:
6a6f6573 5f6b6579

password:

74686973 69737265 616c6¢79 73656372 6574

H(mymac | [identifier |] password):
£d24178b f56fbb4a al7d18a5 5ade7ce6 9d62cb63 2462c236 0751F507

Pinit.x:

562612cf 3648FeOb 0704bbl12 2250b254 b194647e 54ce0807 2eecca74

Qi.x:

2867c4e0 80980dba d5099a8F 821e8729 679c5c71 4888cObd 9c7e8e40

X.X:

740ab9f0 c173507b 0081b475 b275de6a 3060cT43 4b6a65f0 b0l1l44ald

M.x:

bcca8e23 e5c05032 ae6051ca 6392fF7c4 a4b4fofe 13e81261 32d070e5

M.y:

2233c269

c84a438d

bel4el01

59536¢60

a2b0e8a3

036¢T792

25bc252¢c

5b612d25

48c5fabe

b¥913310

52848176

© 2022 Wi-Fi Alliance. All Rights Reserved.

Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 178 of 188

S

H

Wi-Fi Easy Connect™ Specification v3.0

8fb6c57d 856FF3fe 63123alf 80696c4 9718b4a9 clcclla6 29a5a73a e3ad9d78
DPP PKEX Exchange Request frame from ac:64:91:f4:52:07 to ff:ff:FF-FF-fF:ff

71876f5a 57830000 7a000000 7a000000 14000000 02000000 dOOOO0O00 FFFFFFff
ffffac64 9145207 fFFFfFfff FFFFO000 0409506F 9ala0107 12100200 13001510
08006a6f 65735Ff6b 65791310 4000bcca 8e23e5c0 5032ae60 51ca6392 f7c4adb4
f9fel3e8 126132d0 70e55284 81768fb6 c57d856F F3fe6312 3alff806 96c49718
b4a9clcc 11a629a5 a73ae3ad 9d78

Finite Cyclic Group, length 2, value:
1300

PKEX Code ldentifier, length 8, value:
6a6f6573 5f6b6579

Encrypted Key, length 64, value:

bccaB8e23 e5c05032 ae6051ca 6392f7c4 a4b4f9fe 13e81261 32d070e5 52848176
8fb6c57d 856FF3fe 63123alf 80696c4 9718b4a9 clccllab6 29a5a73a e€3ad9d78

D.3 Responder Processes PKEX Exchange Request frame

M.x:
bccaB8e23 e5c05032 ae6051ca 6392f7c4 a4b4f9fe 13e81261 32d070e5 52848176

M.y:
8fb6c57d 856FF3fe 63123alf F80696c4 9718b4a9 clccllab 29a5a73a e3ad9d78

identifier:
6a6f6573 5F6b6579

H(Peermac | [identifier |] password):
£d24178b f56fbb4a al7d18a5 5ade7ce6 9d62cb63 2462c236 0751F507 25bc252c

Pinit.x:
562612cf 3648feOb 0704bbl12 2250b254 b194647e 54ce0807 2eecca74 5b612d25

X.X:
740ab9f0 c173507b 0081b475 b275de6a 3060cf43 4b6a65f0 b0144ald bf913310

D.4 Responder Generates PKEX Exchange Response frame

identifier:
6a6f6573 5F6b6579

password:
74686973 69737265 616c6¢79 73656372 6574

H(mymac | [identifier |] password):
bal5285a 4b2055f4 0dla0ad40 64461006 d4852ec6 c4331cl9 al562ba8 79cb2753

Presp.x:
lead48abl a4e84239 ad7307f2 34df574F c09d54be 361b310f 59915233 acl199d76

Qr.x:
134aflc4 1c8e7d97 4c647cc2 bfca30b0 36966959 9044e90 f673d756 706e624c

Y.X:
a9972a94 £143740d f31c7a61 124d01a4 e949d0fd cede6136 9f4c6b09 7aebl8b5

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 179 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

N.x:
0a91e072 8809bb81 91ea36d0 ald5602b f36ab670 8fbfd063 e2511e53 3b534020

N.y:
79c4cbe7 cdea09la b934f011 4162468e ad01790a 258chbf06 62b31Ffd3 1ee302d9

DPP PKEX Exchange Response frame from 6e:5e:ce:6e:f3:dd to ac:64:91:f4:52:07

71876f5a 61be0000 79000000 79000000 14000000 02000000 dOOOO0O00 ac6491f4
52076e5e ce6ef3dd FFFfffff fFFFO000 0409506F 9ala0108 00100100 00151008
006a6f65 735f6b65 79131040 000a91e0 728809bb 8191ea36 d0ald560 2bf36ab6
708Ffbfd0 63e2511e 533b5340 2079c4cb e7cdea09 1ab934f0 11416246 8ead0179
0a258cbf 0662b31f d31ee302 d9

Status, length 1, value:
00

PKEX Code lIdentifier, length 8, value:
6a6f6573 5F6b6579

Encrypted Key, length 64, value:

0a91e072 8809bb81 91ea36d0 ald5602b ¥36ab670 8fbfd063 e2511e53 3b534020
79c4cbe7 cdeal9la b934f011 4162468e ad01790a 258chbf06 62b31fd3 1ee302d9

D.5 Initiator Processess PKEX Exchange Response frame

N.x:
0a91e072 8809bb81 91ea36d0 ald5602b ¥36ab670 8fbfd063 e2511e53 3b534020

N.y:
79c4cbe7 cdeal9la b934f011 4162468e ad01790a 258chbf06 62b31fd3 1ee302d9

identifier:
6a6f6573 5f6b6579

H(Peermac | [identifier |] password):
bal5285a 4b2055f4 0dla0a40 64461006 d4852ec6 c4331cl9 al562ba8 79cb2753

Presp.x:
lead48abl a4e84239 ad7307f2 34df574F c09d54be 361b310F 59915233 acl199d76

Y.X:
a9972a94 £143740d f31c7a61 124d01a4 e949d0fd cede6136 9f4c6b09 7aebl8b5

D.6 Initiator Generates PKEX Commit/Reveal Request

X:
8365c5ed 93d751be 2d92b41 Odc6adfd 95670889 183fFaclb d66759ad 85c3187a

Y.X:
a9972a94 f143740d f31c7a6l1 124d0lad e949d0fd cede6136 9F4c6b09 7aebl8b5

(xX*Y).x:
7415el1c6 86111044 3cc345d1 36984e48 8c6a26d3 d5482fFa6 7e9841a0 3a87c78fF

context to create z
MAC-Initiator:
ac6491f4 5207

MAC-Responder :

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 180 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

6e5ecebe 3dd

M.x:
bcca8e23 e5c05032 aeb6051ca 6392fF7c4 a4b4f9ofe 13e81261 32d070e5 52848176

N.x:
0a91e072 8809bb81 91ea36d0 ald5602b F36ab670 8Fbfd063 e2511e53 3b534020

password:
74686973 69737265 616c6¢79 73656372 6574

z:
5271dee9 15cf7bl19 08747d8e db839444 2411c518 3ee38b79 ebef399c 08738e0b

(a*Y).x:
31clb9ab 31d9c2f2 78b35b5c 29d180df eaf76d58 5ede9cOd d91chb661 49db572e

context for u
MAC-Initiator:
ac6491f4 5207

A.X:
0ad58864 754c8126 85fFf3a52 a573cld7 2c72c4eb ed98f391 5622d4df c84a438d

Y.X:
a9972a94 f143740d f31c7a6l1 124d0lad4 e949d0fd cede6136 9F4c6b09 7aebl8b5

X.X:
740ab9f0 c173507b 0081b475 b275de6a 3060cf43 4b6a65f0 b0144ald bf913310

u:
598c3d8d cccea2d4 3259068d 542a9074 42f07e8c bcfb3fb4 9faacl2e b2fee5b6

DPP PKEX Commit/Reveal Request frame from ac:64:91:f4:52:07 to 6e:5e:ce:6e:f3:dd

71876f5a 100100 a0000000 a0000000 14000000 02000000 dOOOO000 6e5ecebe
f3ddac64 91f45207 FFFFFFff FFFFO000 0409506F 9ala0109 04107800 c23adlef
c564aa9a e2f95d9c 2faf67fb 47c038bl cald3327 1186cd38 c3caf63b 14cl56ba
366eb37e 70480cc3 43cd3f35 53636d8b 30a04912 a09cee8b 85373c41 3955107e
f5clbch3 el5d55ae ac6c6eb8 643ce94d d37c8clf b978b8d3 803616a5 661dbd54
13668722 6892c300 8497e90d a52eb58b 0838el1d2

Wrapped Data, length 120, value:

c23adlef c564aa9a e2f95d9c 2faf67fb 47c038bl cald3327 1186cd38 c3caf63b
14cl156ba 366eb37e 70480cc3 43cd3f35 53636d8b 30a04912 a09cee8b 85373c41l
3955107e f5clbcb3 el5d55ae ac6c6eb8 643ce94d d37c8clf b978b8d3 803616a5
661dbd54 13668722 6892c300 8497e90d a52eb58b 0838eld2

D.7 Responder Processes PKEX Commit/Reveal Request frame

y:
d98faa24 d7dd3f59 2665d71a 95c862bf d02c4c48 acb0c515 ad4lcbc6e 929675ea

X.X:
740ab9f0 c173507b 0081b475 b275de6a 3060cf43 4b6a65f0 b0144ald bf913310

Z.x = (Y*X).x:
7415e1c6 86111044 3cc345d1 36984e48 8c6a26d3 d5482fa6 7e€9841a0 3a87c78f

context to create z
MAC-Initiator:

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 181 of 188

S

H

Wi-Fi Easy Connect™ Specification v3.0

ac6491f4 5207

MAC-Responder :
6e5ecebe f3dd

M.x:
bccaB8e23 e5c05032 ae6051ca 6392f7c4 a4b4f9fe 13e81261 32d070e5 52848176

N.x:
0a91e072 8809bb81 91ea36d0 ald5602b ¥36ab670 8Ffbfd063 e2511e53 3b534020

password:
74686973 69737265 616c6¢79 73656372 6574

zZ:Z
5271dee9 15cf7b19 08747d8e db839444 2411c518 3ee38b79 ebef399c 08738e0b

y:
d98faa24 d7dd3f59 2665d7l1a 95c862bFf d02c4c48 acb0c515 ad4lchbc6e 929675ea

A:
0ad58864 754c8126 85fFf3a52 a573cld7 2c72c4eb ed98f391 5622d4df c84a438d

(y*A) .x:
31clb9ab 31d9c2f2 78b35b5c 29d180df eaf76d58 5ede9cOd d91ch661 49db572e

context for u*
MAC-Initiator:
ac6491f4 5207

A.X:
0ad58864 754c8126 85FfF3a52 a573cld7 2c72c4eb ed98f391 5622d4df c84a438d

Y.X:
a9972a94 £143740d f31c7a61 124d01a4 e949d0fd cede6136 9f4c6b09 7aebl18b5

X" .x:

740ab9f0 c173507b 0081b475 b275de6a 3060cf43 4b6a65f0 b0l44ald bF913310
u":

598c3d8d cccea2d4 3259068d 542a9074 42f07e8c bcfb3fb4 9faacl2e b2fee5b6

AUTHENTICATED PEER! Bootstrapping key is trusted!

Peer®s trusted bootstrap key:

4d446b77 45775948 4b6f5a49 7a6a3043 41515949 4b6f5a49 7a6a3044 41516344
49674144 43745749 5a48564d 67536146 2f7a7053 70585042 31797879 784F7674
6d504f52 56694c55 3338684b 5134303d

D.8 Responder Generates PKEX Commit/Reveal Response frame

(b*X) .x:
bc5¥3128 b0b99707 9a23ead6 3cf502ef 4752660 22696203 77b79bce 20e03d44

context for v
MAC-Responder :
6e5ece6e T3dd

B.x:
977b7fa3 9779a814 29febbl2 eldc5e20 a7e017c4 bc743709 0e57c966 a2b0e8a3

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 182 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

S

H

X.X:
740ab9f0 c173507b 0081b475 b275de6a 3060cf43 4b6a65f0 b0144ald bf913310

Y.X:
a9972a94 £143740d f31c7a61 124d01a4 e949d0fd cede6136 9f4c6b09 7aebl8b5

VI
b2833ce2 lab4e42c 082111a5 dd232334 e48019F6 6b2e274F 521fFe2f7 dfall999

DPP PKEX Commit/Reveal Response frame from 6e:5e:ce:6e:f3:dd to ac:64:91:f4:52:07

71876f5a 336c0100 a0000000 a0000000 14000000 02000000 dOOO0O000 ac6491f4
52076e5e ce6ef3dd FFFFFFFF FFFFOO00 0409506f 9ala0l0a 04107800 00664552
70bcd7cl 73235ca2 86cd867a bb62bled4d 7c8ed4de3 c2886316 ffalbf4f 3e53e617
6770bb9f 4ddebdae 1a4c003b df9c8695 c44493ab 6ade758c 6¢f41f0f 7F3F93a6
1b7b6fd4 44bl6c5a 2729F346 1b21f6bc d78aclaf e33d0649 9cb5bae0 2d54e949
188e3b9f 8al194f3d d899bd15 6aa54ect e04b0c84

Wrapped Data, length 120, value:

00664552 70bcd7cl 73235ca2 86cd867a bb62ble4 7c8edde3 c2886316 ffalbf4af
3e53e617 6770bb9f 4ddebdae 1a4c003b df9c8695 c44493ab 6ade758c 6c¢cf41fF0f
7f3f93a6 1b7b6fd4 44bl6c5a 2729346 1b21f6bc d78aclaf e€33d0649 9cb5bael
2d54e949 188e3b9f 8al94f3d d899bdl5 6aa54ect e04b0c84

D.9 Initiator Processes PKEX Commit/Reveal Response frame

Xz
8365c5ed 93d751be ¥2d92b41 Odc6adfd 95670889 183fFaclb d66759ad 85c3187a

B:
977b7fa3 9779a814 29febbl2 eldc5e20 a7e017c4 bc743709 0e57¢c966 a2b0e8a3

(X*B) .x:
bc5¥3128 b0b99707 9a23ead6 3cf502ef 4752660 22696203 77b79bce 20e03d44

context for v*
MAC-Responder :
6eb5ece6e T3dd

B.x:
977b7fa3 9779a814 29febbl2 eldc5e20 a7e017c4 bc743709 0e57c966 a2b0e8a3

X.X:
740ab9f0 c173507b 0081b475 b275de6a 3060cf43 4b6a65f0 b0144ald bf913310

Y®.x:

a9972a94 £143740d f31c7a61 124d01a4 e949d0fd cede6136 9f4c6b09 7aebl8b5
v®:

b2833ce2 lab4e42c 082111a5 dd232334 e48019f6 6b2e274f 521fe2f7 dfall999

AUTHENTICATED PEER! Bootstrapping key is trusted!

Peer®s trusted bootstrap key:

4d446b77 45775948 4b6f5a49 7a6a3043 41515949 4b6f5a49 7a6a3044 41516344
49674143 6c33742F 61356435 71425170 2¥727353 34647865 494b6667 46385338
6444634a 446c664a 5a714b77 364b4d3d

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 183 of 188

Wi-Fi Easy Connect™ Specification v3.0

Appendix E DPPEnvelopedData Test Vector for NIST P-256

Password: PBKDF2_password

Password (15 octets):
50424b44 46325F70 61737377 67264

Salt (64 octets):
fadc6f32 d0431041 ebb3017e 111991b5 17a47b84 9f88fc75 6892559b laf8af9l
ch97783b 5b53930d f709adc7 57931533 42ff4162 9ca5309e el6d3al7 35942722

Key encryption key (derived key) (32 octets):
57390bc3 028Ffbd8 5250004e 83b5c4bd 4300491a f27ad8le ael8715a 1359f76¢c

Content key (32 octets):
98bc1569 49cf5f94 ca6fdbl2 chbf3740e 6043148b 255f7021 fde0d495 8a97d827

Encrypted content key (48 octets):
64bc30dc 5baf26cl 23badbc2 46f4a983 636b5134 34ffbcac c40d665c 28F22F9f
fd0d9cla babfc982 f6e2ea82 77b2ffe8

DPPAsymmetricKeyPackage (cleartext) (403 octets):

3082018f 3082018b 02010030 1306072a 8648ce3d 02010608 2a8648ce 3d030107
04333031 02010104 201d24a8 8e25d204 77e0aa76 78a59764 6ab859e0 1144ccd3
674ad779 8347b99d 99a00a06 082a8648 ce3d0301 07a08201 3a318201 36308201
32060b2b 06010401 82be6801 02013182 01213082 011d0433 30310201 0104207c
a2el135c8 5e8830b4 8c978642 c5271259 8fd4a27a 5f88dc3a dadb2c55 c9bd62a0
0a06082a 8648ce3d 0301070c 637b2277 692d6669 5f746563 68223a22 696e6672
61222c22 64697363 6F766572 79223a7b 22737369 64223a22 4e657477 6F726b20
30205353 49442031 32333435 36373839 30313233 34353637 227d2c22 63726564
223a7b22 616b6d22 3a226470 70227d7d 0c81807b 2267726F 75707322 3a5b7b22
6772675 70496422 3a22686F 6d653022 2c226e65 74526F6¢c 65223822 73746122
7d2c7b22 67726F75 70496422 3a22436F 6d6d6f6e 2067726F 7570222c 226e6574
52616c65 223a2273 7461227d 5d2c2265 78706972 79223a22 32303330 2d30312d
33315432 323a3030 3a30302b 30323a30 30227d

Encrypted DPPAsymmetricKeyPackage (419 octets):

4f2755ef 6845bd25 f7e0d540 33f2dlaf ace271al 246893cb c10a8350 4c432dbb
5586fa74 8c86a7e5 64f3dbcft dbf4620f 4aac4c2a 381b4316 6117404 2e867433
a349a387 38ebcfbc ¢5326825 f67ddee6 dd68134f 21893ea5 7c2fb4a7 1c411f46
aa7890b9 fa06b5c2 9elccce3 db2c76c9 d5391286 1ef91054 cc5a2flb 645b5€38
1fb9a776 2achb04ff 3a73fa7l 18b84697 9896bc5a 35a3f433 d44d5b30 1a67d007
510c9421 9442c4b6 b11784a5 97158c50 7fe24dc5 3b0950c5 9F0667cc 5328cc53
Cc7439e15 c3588b9d 5d846395 fd226159 374cb42a d94ef441 clbcacfl 48lafads
51fe9190 4ab65315 c83e59e0 b2726520 0278a24d 00f7b699 75ed054b fbaO7feb
6de038b9 ac021fab 1919fdf3 1d04baf7 96bb34d8 e618d9cb d8bal27e 2fcee2e9
5b826a88 2f14cd9b b5abc9c4 220cc74 d6c059b5 80fald5c dcfa6511 53329e43
f6a5ff8d d65b0790 40baa7al 12690a5d ecddff8f feO0fe66 c903F390 128bf220
06e0d7f7 214d7059 5al3d3cb 16f86cdb 31a02fel 40d4cd26 20b247a3 bae2f152
1aee6085 9abe8be8 £369354d 8a53ea92 6e7d3861 2ef18481 e5f45300 eb9d850f
ca0c33

DPPEnvelopedData (641 octets):

3082027d 02010331 81b0a381 ad308laa 020100a0 64306206 092a8648 86f70d01
050c3055 0440fadc 6132d043 1041ebb3 017e1119 91b517a4 7b849f88 fc756892
559blaf8 af91ch97 783b5b53 930df709 adc75793 153342fFf 41629ca5 309eel6d
3a173594 27220202 03e80201 20300a06 082a8648 86f70d02 09300d06 0b2a8648
86170d01 09100316 043064bc 30dc5baf 26cl23ba 4bc246f4 a983636b 513434fF
bcacc40d 665c28F2 2Ff9ffd0Od 9clababf c982f6e2 ea8277b2 ffe83082 01c3060b
2b060104 0182be68 01020230 0d060b2a 864886F7 0d010910 03168082 01a34f27

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 184 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

55ef6845
fa748c86
a38738eb
90b9fa06
a7762ach
94219442
9el15c358
91904ab6
38b9ac02
6a882f14
ff8dd65b
d7f¥7214d
60859abe
33

bd25€7e0
a7e564f3
cfbcch32
b5c29elc
04ff3a73
c4b6b117
8b9d5d84
5315c83e
1fab1919
cd9bb5ab

079040ba

70595a13
8be81369

ds
db
68
cc
fa
84
63
59
fd
c9
a7
d3
35

4033f2 dlaface2 71al12468 93cbclOa 83504c43 2dbb5586
cfdbf4 620f4aac 4c2a381b 431661f1 74042e86 7433a349
25f67d dee6dd68 13412189 3eab7c2f b4a7lc4l 1f46aa78
e3db2c 76c9d539 12861ef9 1054cch5a 2fl1b645b 5F381Fb9
7118b8 46979896 bc5a35a3 433d44d 5b301a67 d007510c
ab59715 8c507fe2 4dc53b09 50c59fF06 67cc5328 cc53c743
95fd22 6159374c b42ad94e f441clbc 4cfl48la fad4551fe
e0b272 65200278 a24d00f7 b69975ed 054bfba0 7feb6deO
31d04 baf796bb 34d8e618 d9cbd8ba 127e2fce e2e95b82
c41220 cc74d6¢c0 59b580fFa 1d5cdcfa 65115332 9e43f6a5
all269 Oa5decdd FF8ffe00 fe66c903 F390128b £22006e0
cb16f8 6cdb31a0 2fel40d4 cd2620b2 47a3bae2 f1521aee
4d8a53 ea926e7d 38612efl 8481e5f4 5300eb9d 850fcalc

Pretty print of DPPEnvelopedData

DPPEnvelopedData ::

vers

ion: 3

{

recipientinfos: Recipientinfos ::= {

PasswordRecipientinfo ::= {
version:
keyDerivationAlgorithm: KeyDerivationAlgorithmldentifier ::= {

algorithm: { 1.2.840.113549.1.5.12 }

parameters: PBKDF2-params ::= {

}

}

}

0

salt:
fa dc 6f 32 dO 43 10 41 eb b3 01 7e 11 19 91 b5
17 a4 7b 84 9f 88 fc 75 68 92 55 9b la 8 af 91
cb 97 78 3b 5b 53 93 0d f7 09 ad c7 57 93 15 33
42 ff 41 62 9c a5 30 9e el 6d 3a 17 35 94 27 22

iterationCount: 1000

keyLength: 32

prf: Algorithmldentifier ::= {
algorithm: { 1.2.840.113549.2.9 }

}

keyEncryptionAlgorithm: KeyEncryptionAlgorithmldentifier ::= {
algorithm: { 1.2.840.113549.1.9.16.3.22 }

}

encryptedKey:

64 bc 30 dc 5b af 26 c1 23 ba 4b c2 46 f4 a9 83
63 6b 51 34 34 ff bc ac c4 0d 66 5¢c 28 2 2f 9f
fd 0d 9c l1la ba bf c9 82 f6 e2 ea 82 77 b2 ff e8

}

encryptedContentinfo: EncryptedContentinfo ::= {

contentType: { 1.3.6.1.4.1.40808.1.2.2 }

contentEncryptionAlgorithm: ContentEncryptionAlgorithmldentifier ::= {
algorithm: { 1.2.840.113549.1.9.16.3.22 }

}

encryptedContent:

4f
ac
55
4a
a3
dd
aa
ds
1f
98

27
e2
86
ac
49
68
78
39
b9
96

55
71
fa
4c
a3
13
90
12
a7
bc

ef 68 45 bd 25 f7 e0 d5 40 33 f2 di1 af
al 24 68 93 cb c1 Oa 83 50 4c 43 2d bb
74 8c 86 a7 e5 64 3 db cf db f4 62 Of
2a 38 1b 43 16 61 f1 74 04 2e 86 74 33
87 38 eb cf bc ¢c5 32 68 25 f6 7d de e6
4f 21 89 3e ab 7c 2F b4 a7 1c 41 1f 46
b9 fa 06 b5 c2 9e 1c cc e3 db 2c 76 c9
86 1le 9 10 54 cc 5a 2f 1b 64 5b 5f 38
76 2a cb 04 ff 3a 73 fa 71 18 b8 46 97
5a 35 a3 f4 33 d4 4d 5b 30 l1la 67 dO 07

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 185 of 188

gj_i

=

g,

A

Wi-Fi Easy Connect™ Specification v3.0

51 Oc 94 21 94 42 c4 b6 bl 17 84 a5 97 15 8c 50
7f e2 4d ¢5 3b 09 50 c5 9F 06 67 cc 53 28 cc 53
c7 43 9e 15 c3 58 8b 9d 5d 84 63 95 fd 22 61 59
37 4c b4 2a d9 4e T4 41 cl bc 4c 1 48 la fa 45
51 fe 91 90 4a b6 53 15 c8 3e 59 e0 b2 72 65 20
02 78 a2 4d 00 7 b6 99 75 ed 05 4b fb a0 7F eb
6d e0O 38 b9 ac 02 1f ab 19 19 fd 3 1d 04 ba 7
96 bb 34 d8 e6 18 d9 cb d8 ba 12 7e 2F ce e2 €9
5b 82 6a 88 2Ff 14 cd 9b b5 ab c9 c4 2 20 cc 74
d6 cO 59 b5 80 fa 1d 5¢c dc fa 65 11 53 32 9e 43
6 a5 fF 8d d6 5b 07 90 40 ba a7 al 12 69 0Oa 5d
ec dd ff 8F fe 00 fe 66 c9 03 3 90 12 8b 2 20
06 e0 d7 7 21 4d 70 59 5a 13 d3 cb 16 8 6¢ db
31 a0 2f el 40 d4 cd 26 20 b2 47 a3 ba e2 f1 52
la ee 60 85 9a be 8b e8 3 69 35 4d 8a 53 ea 92
6e 7d 38 61 2e f1 84 81 e5 4 53 00 eb 9d 85 OF

ca Oc 33
}
Pretty print of cleartext DPPAsymmetricKeyPackage
DPPAsymmetricKeyPackage ::= {
OneAsymmetricKey ::= {

version: 0

privateKeyAlgorithm: PrivateKeyAlgorithmldentifier ::

algorithm: { 1.2.840.10045.2.1 }
parameters: { 1.2.840.10045.3.1.7 }
}
privateKey:
30 31 02 01 01 04 20 1d 24 a8 8e 25 d2 04 77 €0
aa 76 78 a5 97 64 6a b8 59 e0 11 44 cc d3 67 4a
d7 79 83 47 b9 9d 99 a0 Oa 06 08 2a 86 48 ce 3d
03 01 07
attributes: Attributes ::= {
Attribute ::= {
attrType: { 1.3.6.1.4.1.40808.1.2.1 }
attrvValues: attrValues ::= {
DPPConfigurationParameters ::= {
privacyProtectionKey:
30 31 02 01 01 04 20 7c a2 el 35
8c 97 86 42 c5 27 12 59 8f d4 a2
da db 2c 55 c9 bd 62 a0 Oa 06 08
03 01 07

configurationTemplate: {"wi-fi_tech":

SSID 12345678901234567""}, " cred" - {""akm" - ""dpp""}}

connectorTemplate:

S

H

c8 5e 88 30 b4
7a 5F 88 dc 3a
2a 86 48 ce 3d

"infra","discovery":{"ssid":"Network O

{"'groups":[{"groupld":"home0", " netRole" :"sta"},{""groupld":""Common
group™,"netRole":"sta"}],"expiry":""2030-01-31T22:00:00+02:00""}

}

}

Pretty print of privateKey attribute in DPPAsymmetricKeyPackage
ECPrivateKey ::= {

version: 1
privateKey:

1d 24 a8 8e 25 d2 04 77 e0 aa 76 78 a5 97 64 6a
b8 59 e0 11 44 cc d3 67 4a d7 79 83 47 b9 9d 99

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.

Page 186 of 188

Wi-Fi Easy Connect™ Specification v3.0

parameters: { 1.2.840.10045.3.1.7 }
}

Pretty print of privacyProtectionKey attribute in DPPAsymmetricKeyPackage
ECPrivateKey ::= {
version: 1
privateKey:
7c a2 el 35 c8 5e 88 30 b4 8c 97 86 42 c5 27 12
59 8F d4 a2 7a 5F 88 dc 3a da db 2c 55 c9 bd 62
parameters: { 1.2.840.10045.3.1.7 }

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 187 of 188

A
L)

Wi-Fi Easy Connect™ Specification v3.0

S

H

Appendix F CSR Attributes Request Test Vector

F.1 Request for CSR with p521, ECDSA with SHA-512
Base64-encoded ASN.1 of CSR Attributes:

MF8GCSGGS 1b3DQEJIBZASBgcghk j OPQ I BMQCGBSUBBAA j BgNVBAUWLWYJK0Z 1hveN
AQKOMS I GBysGAQEBARYGCgmSJomT8 i xkAQUGCYsSGAQQBgr50AQEDBggqghkjOPQQD
BA=

Pretty Print of CSR Attributes Request:

SEQUENCE (5 elem)
OBJECT IDENTIFIER 1.2.840.113549.1.9.7 challengePassword (PKCS #9)
SEQUENCE (2 elem)
OBJECT IDENTIFIER 1.2.840.10045.2.1 ecPublicKey (ANSI X9.62 public key type)
SET (1 elem)
OBJECT IDENTIFIER 1.3.132.0.35 secp521rl (SECG (Certicom) named elliptic curve)
OBJECT IDENTIFIER 2.5.4.5 serialNumber (X.520 DN component)
SEQUENCE (2 elem)
OBJECT IDENTIFIER 1.2.840.113549.1.9.14 extensionRequest (PKCS #9 via CRMF)
SET (3 elem)
OBJECT IDENTIFIER 1.3.6.1.1.1.1.22 (MAC address)
OBJECT IDENTIFIER 0.9.2342.19200300.100.1.5 (FavoriteDrink)
OBJECT IDENTIFIER 1.3.6.1.4.1.40808.1.1.3 (IMEID)
OBJECT IDENTIFIER 1.2.840.10045.4.3.4 ecdsaWithSHA-512SHA-512 (ANSI X9.62 ECDSA algorithm with
SHA-512SHA-512)

F.2 Request for CSR with 3072-bit RSA with SHA-256
Base64-encoded ASN.1 of CSR Attributes:

MEKGCSQGS I b3DQEJBZARBgkghk i GOWOBAQEXBA I CDAAWGQY JK0Z I hveNAQKOMQWG
CgmSJomT8ixkASKGCSGGS I b3DQEBCWYDVQQF

Pretty Print of CSR Attributes Request:

SEQUENCE (5 elem)
OBJECT IDENTIFIER 1.2.840.113549.1.9.7 challengePassword (PKCS #9)
SEQUENCE (2 elem)
OBJECT IDENTIFIER 1.2.840.113549.1.1.1 rsaEncryption (PKCS #1)
SET (1 elem)
INTEGER 3072
SEQUENCE (2 elem)
OBJECT IDENTIFIER 1.2.840.113549.1.9.14 extensionRequest (PKCS #9 via CRMF)
SET (1 elem)
OBJECT IDENTIFIER 0.9.2342.19200300.100.1.41 (mobileTelephoneNumber)
OBJECT IDENTIFIER 1.2.840.113549.1.1.11 SHA-256WithRSAEncryption (PKCS #1)
OBJECT IDENTIFIER 2.5.4.5 serialNumber (X.520 DN component)

© 2022 Wi-Fi Alliance. All Rights Reserved.
Used with the permission of Wi-Fi Alliance under the terms as stated in this document.
Page 188 of 188

	Document Revision History
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Scope
	1.2 References
	1.3 Definitions and Acronyms
	1.3.1 Shall/should/may/might Usage
	1.3.2 Conventions
	1.3.3 Abbreviations and Acronyms
	1.3.4 Definitions
	1.3.5 Symbols

	1.4 Item Scope
	1.5 Architecture
	1.5.1 Device Roles
	1.5.2 Authentication Roles
	1.5.3 Configurator Delegation

	1.6 Security Considerations
	1.6.1 Overview
	1.6.2 Threat Profile
	1.6.2.1 Threats to Bootstrapping
	1.6.2.2 Threats to QR Code Scanning
	1.6.2.3 Threats to NFC
	1.6.2.4 Threats to BLE
	1.6.2.5 Threats to Proof of Knowledge of a Shared Code (PKEX)
	1.6.2.6 Threats to Bootstrapping via a Third Party
	1.6.2.7 Threats to Push Button Bootstrapping
	1.6.2.8 Threats to DPP Authentication and Provisioning
	1.6.2.9 Threats when Mutual Authentication is not Supported
	1.6.2.10 Threats when the Enrollee is the Initiator
	1.6.2.11 Threats when the Configurator is the Initiator
	1.6.2.12 Threats to Network Access

	1.6.3 Trust Model
	1.6.3.1 Trust in Bootstrapped Public Keys
	1.6.3.2 Trust in the DPP Authentication and Provisioning Protocol
	1.6.3.3 Imprinting of Enrollee
	1.6.3.4 Imprinting of Configurator
	1.6.3.5 Trust in the DPP Network Access Protocol

	2 DPP Protocol Usage
	2.1 Overview
	2.2 Infrastructure Set-up and Connectivity
	2.2.1 AP Configuration
	2.2.2 STA Configuration
	2.2.3 Infrastructure Connectivity
	2.2.4 Message Flows for Infrastructure Connectivity

	2.3 DPP over TCP Connections
	2.3.1 Overview
	2.3.2 DPP Initiator/Responder Roles and TCP Client/Server Roles
	2.3.3 Encapsulating DPP in a Streaming Protocol
	2.3.4 Encapsulating DPP in TCP
	2.3.4.1 Controller as the Responder
	2.3.4.2 Controller as Initiator

	2.3.5 TCP/IP -Only DPP
	2.3.6 Bootstrapping with DPP over TCP

	2.4 DPP Service Discovery
	2.4.1 Controller Services
	2.4.2 Relay Services
	2.4.3 Bootstrapping Services

	2.5 Status Query
	2.6 Reconfiguration
	2.6.1 Overview
	2.6.2 Triggers for Reconfiguration

	2.7 DPP Protocol Version
	2.7.1 Supported Version
	2.7.2 Negotiated Version

	3 Security
	3.1 Properties
	3.2 Public Key Cryptography
	3.2.1 Supported Public Key Cryptosystem
	3.2.2 Notation

	3.3 Cryptographic Suites
	3.3.1 Point Representation

	4 Data Structures
	4.1 Public Keys
	4.2 Connectors
	4.2.1 Connector Signing
	4.2.1.1 Digital Signature Computation

	4.2.2 Encoding

	4.3 DPP Configuration Request
	4.3.1 General
	4.3.2 Wi-Fi Technology
	4.3.3 Network Role
	4.3.4 DPP Discovery
	4.3.4.1 SSID

	4.3.5 Credential
	4.3.5.1 Connector
	4.3.5.2 C-sign-key
	4.3.5.3 Privacy-protection-key
	4.3.5.4 WPA2 PSK
	4.3.5.5 WPA3 Password
	4.3.5.6 WPA3 Mixed Mode
	4.3.5.7 Combined DPP AKM and Legacy Modes
	4.3.5.8 Other Modes
	4.3.5.9 Enterprise Credentials
	4.3.5.10 Expiry

	4.4 DPP Configuration Request Object
	4.4.1 Optional 3rd party attributes in Configuration Request Object
	4.4.1.1 OCF Information

	4.5 DPP Configuration Object
	4.5.1 Overview
	4.5.2 Optional 3rd party attributes in Configuration Object
	4.5.2.1 Open Connectivity Foundation (OCF) Information

	4.5.3 Encoding
	4.5.4 DPP Reconfig Authentication Objects

	5 Bootstrapping of Trust
	5.1 Overview
	5.2 Bootstrapping Information
	5.2.1 Bootstrapping Information Format

	5.3 Scanning a QR Code
	5.4 NFC
	5.4.1 Overview
	5.4.2 NFC Connection Handover
	5.4.2.1 DPP Bootstrapping via Negotiated Handover
	5.4.2.2 DPP Bootstrapping via Static Handover

	5.4.3 DPP Bootstrapping via NFC URI Record

	5.5 Bluetooth
	5.5.1 Overview
	5.5.2 Responder Procedures
	5.5.3 Initiator Procedures
	5.5.4 BLE GATT Based DPP Bootstrapping
	5.5.4.1 BLE Advertising Payload
	5.5.4.2 Characteristic Type and UUID Generation Rule

	5.6 PKEX: Proof of Knowledge of a Shared Code, Key, Phrase, or Word
	5.6.1 PKEX Preliminaries
	5.6.2 PKEX Exchange Phase
	5.6.3 PKEX Commit-Reveal Phase

	5.7 Bootstrapping Using a Trusted Third Party
	5.7.1.1 Overview
	5.7.1.2 Requirements

	5.8 Push Button PKEX-based
	5.8.1 Overview
	5.8.2 Discovery phase
	5.8.3 PKEX push button-based
	5.8.4 DPP Authentication and Configuration protocol
	5.8.5 Push Button PKEX-based security mitigations

	6 DPP Protocols
	6.1 Overview
	6.2 DPP Presence Announcement
	6.2.1 Computing the Hash for Presence Announcement
	6.2.2 Generation of Channel List for Presence Announcement
	6.2.3 Enrollee Presence Announcement Procedure
	6.2.4 Configurator Procedure and Configurator Connectivity Element

	6.3 DPP Authentication protocol
	6.3.1 Overview
	6.3.1.1 Channel Agreement with Protocol Version 1
	6.3.1.2 Channel Agreement with Protocol Version 2 and Higher
	6.3.1.3 Authentication Protocol Completion
	6.3.1.4 Protocol Conventions
	6.3.1.5 DPP Capabilities Negotiation

	6.3.2 DPP Authentication Request
	6.3.3 DPP Authentication Response
	6.3.4 DPP Authentication Confirm

	6.4 DPP Configuration Protocol
	6.4.1 Overview
	6.4.2 DPP Configuration Request
	6.4.3 DPP Configuration Response
	6.4.3.1 Configurator Handling
	6.4.3.2 Enrollee Handling

	6.4.4 DPP Configuration Result
	6.4.5 DPP Connection Status Result
	6.4.5.1 Overview
	6.4.5.2 DPP Connection Status Object

	6.5 DPP Reconfiguration Authentication Protocol
	6.5.1 Overview
	6.5.2 DPP Reconfiguration Announcement
	6.5.3 DPP Reconfiguration Authentication Request
	6.5.4 DPP Reconfiguration Authentication Response
	6.5.5 DPP Reconfiguration Authentication Confirm
	6.5.6 Connector Matching for Reconfiguration

	6.6 Network Introduction
	6.6.1 Introduction
	6.6.2 Network Introduction Protocol
	6.6.3 Private Introduction Protocol
	6.6.4 Key Establishment in Network Introduction
	6.6.5 Connector Group Comparison
	6.6.6 Network Access Protocols

	7 State Machines
	7.1 Initiator State Machine
	7.1.1 States
	7.1.2 Events and Output
	7.1.3 Variables
	7.1.4 Parent Process Behavior
	7.1.5 State Machine Behavior
	7.1.5.1 Nothing State
	7.1.5.2 Bootstrapped State
	7.1.5.3 Authenticating State
	7.1.5.4 Authenticated

	7.2 Responder State Machine
	7.2.1 States
	7.2.2 Events and Output
	7.2.3 Variables
	7.2.4 State Machine Behavior
	7.2.4.1 Awaiting State
	7.2.4.2 Bootstrap Key Acquiring State
	7.2.4.3 Authenticating State
	7.2.4.4 Authenticated State

	7.3 Configurator State Machine
	7.3.1 States
	7.3.2 Events and Output
	7.3.3 Variables
	7.3.4 Parent Process Behavior
	7.3.5 State Machine Behavior
	7.3.5.1 Authenticated State
	7.3.5.2 Finished State
	7.3.5.3 Terminated State

	7.4 Enrollee State Machine
	7.4.1 States
	7.4.2 Events and Output
	7.4.3 Variables
	7.4.4 State Machine Behavior
	7.4.4.1 Authenticated State
	7.4.4.2 Provisioning State
	7.4.4.3 Provisioned State
	7.4.4.4 Terminated State

	7.5 Detailed Protocol Description
	7.5.1 DPP Bootstrapping
	7.5.2 DPP Authentication Exchange
	7.5.3 DPP Configuration Exchange
	7.5.4 DPP Network Introduction Exchange
	7.5.5 Network Access

	8 DPP Attribute, frame, and Element Formats
	8.1 DPP Attributes
	8.1.1 DPP Attribute Body Field Definitions
	8.1.1.1 DPP Status Attribute
	8.1.1.2 Initiator Bootstrapping Key Hash Attribute and Responder Bootstrapping Key Hash Attribute
	8.1.1.3 Initiator/Protocol Key and Responder Protocol Key Attributes
	8.1.1.4 Wrapped Data Attribute
	8.1.1.5 Initiator Nonce, Responder Nonce, Configurator nonce, and Enrollee Nonce Attributes
	8.1.1.6 Initiator Capabilities Attribute and Responder Capabilities Attribute
	8.1.1.7 Initiator Authenticating Tag attribute and Responder Authenticating Tag Attribute
	8.1.1.8 DPP Configuration Object Attribute
	8.1.1.9 DPP Connector Attribute
	8.1.1.10 DPP Configuration Request Object Attribute
	8.1.1.11 Bootstrapping Key Attribute
	8.1.1.12 Finite Cyclic Group Attribute
	8.1.1.13 Encrypted Key Attribute
	8.1.1.14 Code Identifier Attribute
	8.1.1.15 Transaction ID Attribute
	8.1.1.16 Bootstrapping Info Attribute
	8.1.1.17 Channel Attribute
	8.1.1.18 Protocol Version Attribute
	8.1.1.19 DPPEnvelopedData Attribute
	8.1.1.20 sendConnStatus Attribute
	8.1.1.21 DPP Connection Status Object Attribute
	8.1.1.22 Reconfiguration Flags Attribute
	8.1.1.23 A-NONCE Attribute
	8.1.1.24 E'-id Attribute

	8.2 DPP frames
	8.2.1 DPP Public Action frames
	8.2.1.1 General Format

	8.2.2 Authentication Request frame
	8.2.3 Authentication Response frame
	8.2.4 Authentication Confirm frame
	8.2.5 Peer Discovery Request frame
	8.2.6 Peer Discovery Response frame
	8.2.7 PKEX Exchange Request frame
	8.2.8 PKEX Version 1 Exchange Request frame
	8.2.9 PKEX Exchange Response frame
	8.2.10 PKEX Commit-Reveal Request frame
	8.2.11 PKEX Commit-Reveal Response frame
	8.2.12 Configuration Result frame
	8.2.13 Connection Status Result frame
	8.2.14 Presence Announcement frame
	8.2.15 Reconfiguration Announcement frame
	8.2.16 Reconfiguration Authentication Request frame
	8.2.17 Reconfiguration Authentication Response frame
	8.2.18 Reconfiguration Authentication Confirm frame
	8.2.19 Push Button Presence Announcement
	8.2.20 Push button presence announcement response
	8.2.21 Private Peer Introduction Query
	8.2.22 Private Peer Introduction Notify
	8.2.23 Private Peer Introduction Update

	8.3 DPP Generic Advertisement Service (GAS) frames
	8.3.1 General Format
	8.3.2 DPP Configuration Request frame
	8.3.2.1 Fragmentation

	8.3.3 DPP Configuration Response frame
	8.3.3.1 Fragmentation

	8.3.4 DPP Status and Error Codes

	8.4 Network Introduction Protocol Elements
	8.4.1 Overview
	8.4.2 Network Introduction Protocol AKM Suite

	8.5 DPP Elements
	8.5.1 Overview
	8.5.2 Configurator Connectivity Element

	9 DPP Configuration Backup and Restore
	9.1 Overview
	9.2 DPPAsymmetricKeyPackage
	9.3 DPPEnvelopedData
	9.4 DPPAsymmetricKeyPackage Encryption
	9.5 DPPEnvelopedData Decryption
	9.6 DPP Configuration Backup
	9.7 DPP Configuration Restore
	9.8 Enabling Multiple Configurators in DPP

	Appendix A Implementation Guidelines
	A.1 Using DPP to Configure Enterprise Credentials

	Appendix B (Informative) Test vectors
	B.1 Test Vectors for DPP Authentication Using P-256 for Mutual Authentication
	B.2 Test Vectors for DPP Authentication Using P-256 for Responder-only Authentication
	B.3 Test Vectors for DPP Authentication Using P-384 for Mutual Authentication
	B.4 Test Vectors for DPP Authentication Using P-521 for Mutual Authentication
	B.5 Test Vectors for DPP Authentication Using Brainpool P-256r1 for Mutual Authentication
	B.6 Test Vectors for DPP Authentication Using Brainpool P-384r1 for Mutual Authentication
	B.7 Test Vectors for DPP Authentication Using Brainpool P-512r1 for Mutual Authentication
	B.8 Enterprise Provisioning Test Vectors
	B.8.1 Configurator
	B.8.2 Enrollee

	Appendix C Role-specific Elements for PKEX
	C.1 Role-specific Elements for NIST p256
	C.2 Role-specific Elements for NIST p384
	C.3 Role-specific Elements for NIST p521
	C.4 Role-specific Elements for Brainpool p256r1
	C.5 Role-specific Elements for Brainpool p384r1
	C.6 Role-specific Elements for Brainpool p512r1

	Appendix D PKEX Test Vector for NIST p256
	D.1 Initial State of Initiator and Responder
	D.2 Initiator Generates PKEX Exchange Request frame
	D.3 Responder Processes PKEX Exchange Request frame
	D.4 Responder Generates PKEX Exchange Response frame
	D.5 Initiator Processess PKEX Exchange Response frame
	D.6 Initiator Generates PKEX Commit/Reveal Request
	D.7 Responder Processes PKEX Commit/Reveal Request frame
	D.8 Responder Generates PKEX Commit/Reveal Response frame
	D.9 Initiator Processes PKEX Commit/Reveal Response frame

	Appendix E DPPEnvelopedData Test Vector for NIST P-256
	Appendix F CSR Attributes Request Test Vector
	F.1 Request for CSR with p521, ECDSA with SHA-512
	F.2 Request for CSR with 3072-bit RSA with SHA-256

